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GMINC - A Mesh Generator for Flow Simulations
In Fractured Reservoirs

1. Introduction

GMINC is a pre-processor computer program for generating geometrical
meshes to be used in modeling fluid and heat flow in fractured porous media.
It is based on the method of "multiple interacting continua" (MINC) as developed
by Pruess and Narasimhan (1982a,b). The meshes generated by GMINC are in integral
finite difference form, and are compatible with the simulators SHAFT79 and MULKOM
(Pruess and Schroeder, 1980; Pruess, 1983a) . Applications with other integral
inite difference simulators are possible, and require slight modifications in
nput/output formats.
. This report describes methodology and application of GMINC, including
reparation of input decks and sample problems. A rather comprehensive overview
f the MINC-method is also provided to make the presentation self-contained
a guide for modeling of flow in naturally fractured media. However, actual
W simulations are not discussed herej illustrative applications to geothermal
biehs can be found in (Pruess and Narasimhan, 1982 a, b; Pruess, 1983b;

arsson et al., 1983).
G

Overview of the MINC-Method

'Relationship to double-porosity approach

he method of "multiple interacting continua" (MINC) is conceptually similar
518 a generalization of, the well-known double-porosity approach (Barenblatt
760; Warren and Root, 1963). In the double-porosity approach, a fractured
’éervoir is partitioned into (1) a primary porosity, which consists of smal
e rock matrix, e.g. intergranular vugs or vesicles, and (2) a secondary

nsisting of fractures and joints. Each of the two porosities is treate:
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as a continuum, whose propertigs can be characterized by means of the
porous medium properties, 1i.e., permeability, porosity, and compressib
Flow within each continuum 1is assumed to be porous flow, governed by Dar
law.

The important feature of the double-porosity approach is the treatme
of Jinterporosity"bflow between rock mafrix and fractures. The classical

double-porosity work employed a quasi-steady approximation, in which sepaé

matrix and in the fractures. The rate of interporosity fluid flow within eag
reservoir subdomain was assumed to be proportional to the difference in averal
pressures, Pl-Pz, between prlmary porosity and fractures. The quasi-steady ‘
approximation has been used to develop approximate analytical solutions (Warren
and Root, 1963), and it has been incorporated in numerical simulators for
flow in naturally fractured reservoirs (Kazemi et al., 1976). This approximati
has later been improved by using time-dependent analytical solutions for flow
from matrix blocks which are subjected to time-dependent changes in boundary
conditions (deSwaan, 1976; Duguid and Lee, 1977; Evans, 1981; Lai et al., 1933);
A similar methodology has also been used for modeling the migration of chemical
pollutants in fissured rock (Bibby, 1981). |
The quasi- steady as well as the analytical approximation to interporosity
flow are applicable only to fluids with small and constant compressibility.
Analytical approximations can give a more accurate description of interporosity 5
flow, but they are available only for regularly shaped matrix blocks CH
slabs, cubes, or spheres) . The MINC—method overcomes these restrictions by treatin
“interporosity flow entirely by numerical methods. This makes p0531ble a fully
transient description of interporosity flow, which is applicable to problems with

coupled fluid and heat flow, and to multiphase,Amulticomponent fluids with large

and varying compressibilities, such as steam-water mixtures. Also, the MINC—methOd
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is applicable to flow systems with irregular and stochastic fracture distributions
Before going further it should be mentioned that several authors have

previously presented a numerical treatment of interporosity flow (Kazemi,

1969; Coats, 1977; Gilman and Kazemi, 1982). This has substantiated the

approximations made in earlier analytical treatments, while overcoming some of
the limitations. However, the numerical work was limited to highly idealized

»fegular distributions of a small number of fractures, or to highly symmetrical
fracture pattefns.

tion of the pressure- and temperature-gradients at the matrix/fracture interface.

In the numerical approaches mentioned above this was achieved by explicit parti-

tioning of the flow domain into "small" simply-connected grid blocks, as in

~conventional POTous medium simulators. This type of approach is unsuitable for

aturally fractured reservoirs with ubiquitous fractures, where it would lead to
Xcessively large numbers of grid blocks.

The MINC-method employs a novel concept for partitioning of the rock

atrix into computational volume elements, which is suitable for flow systems

h fractures too numerous to be accounted for individually and explicitly.
“method follows the double-porosity épproach in assuming that global flow in

€servoir occurs only through the system of interconnected fractures, which,

?rmore, is approximated as a continuum. Long et al. (1982) have shown that

ks of finite fractures may exhibit characteristics quite different from

f'ra poroyg medium.

From a phenomenological viewpoint, however, there is

ﬁ&ification in characterizing a fracture system by means of customary
iEdium Parameters. This is the approach édopted in the MINC-method.




acting continua. We shall now proceed to explain the partitioning method i

detail.

2.2 The partitioning scheme

tion) procedure adopted for interporosity flow. We shall here present a

fundamental principle on which partitioning must be based, and shall then

proceed to apply the principle to naturally fractured flow systems.
In order to numerically model flow processes in geothermal reservoirs

(or, for that matter, in any subsurface flow systems), it is necessary to
partition the system under study into a number of volume elements Vo (n = 1, 2,

.» N). Then the appropriate conservation equations for mass, energy, and
momentum can be written down for each volume element (see Appendix A). These
equations hold true irrespective of size, shape, heterogeneities, etc. of the
volume elements V, (Narasimhan, 1982). This geometric flexibility can be most
fully exploited within an integral finite difference formulatien, which is
locally one-dimensional, avoiding any reference to a global coordinate system
(Edwards, 1972). However, the conservation equations in integral finite differ-
ence form are useful only if the allowable partitions V4 (n = 1, ..., N) are
suitably restricted on the basis of geometric and the;modynamic considerations.
Indeed, to obtain practically solvable equations, we need to be able to relate
fluid and heat flow between volume elements to the accumulation of fluid and heat
within volume elements.

The accumulation terms for mass and heat (left hand sides of Equations

\.1, A.2) determine the average values of thermodynamic parameters within
/olume elements. Fluid and heat flows are driven by gradients of pressure
ind temperature, respectively, and these can be expressed in terms of average

alues of thermodynamlc variables if and only if there is approximate




rium within each volume element at all times. This leads us

B nanic equilib

;;followin9=
For purposes of numerical modeling,

a flow domain must be partitioned, or discretized, in such a way

t there is approx imate thermodynamic equilibrium in all volume

S5orous media, thermodynamic conditions normally vary continuously and smoothly

e
h position, SO that this principle will be satisfied if volume elements are
" gmall simply-connected regions. The situat ion can be

gen as ngufficiently

te different 1n fractured media, where changes in thermodynamic conditions as

onsequence of boiling or cold water -injection may propagate rapidly in the

racture network, while migrating only slowly into the rock matrix. Thus,

ith position in the vicinity of the

hermodynamic conditions may vary strongly w

ractures. Variations in thermodynamic conditions will be much less pronounced

tion of a fracture than perpendicular to it. This suggests that

n the matrix will locally depend primarily

n the direc

g hanges in thermodynamic conditions i

- he nearest fracture, with interporosity flow being

" upon the distance from t

perpendicular to the fracture faces.

Based on these consideration, the MINC-method makes the approx imation

to partition the rock matrix into sequences of nested volume elements, which

are defined on the basis of distance from the fractures. Ffor the case of an

idealized fracture distribution as shown in Figure 1, this concept gives rise

Modeling of fluid and heat

to a computational mesh as shown in Figure 2.

flow for such a sysﬁém of nested volume elements, OT interacting continua,
is straightforward within an integral finite difference formulation. The

cture interaction 1is described in purely geometrical terms, and the

matrix-fra




-]evant geometric quantities, i.e., element volumes, interface area ;

odal distances, can be easily obtained in closed form (Pruess and Narg

982a) .

The partitioning concept - based on distance from the nearest fracture

an be readily extended to arbitrary irregular fracture distributions. F

1lustrates this for a set of fractures of finite length. Depending upgnf

roblem at hand, it may first be necessary to eliminate the dead-end ponbi

Jf the fractures, which do not participate in global flow within the fractur

system (Figure 3b). The cock matrix can then be readily partitioned into sev

~ontinua with increasing distance from the fractures (Figure 3c). While the

general case of irregular fractures is straightforward from the conceptual poiﬁ'

of view, it is not generally possible to obtain the geometrical parameters for

the sub-continua in an explicit analytical fashion. As shown by Pruess and

Karasaki (1982), all geometric parameters for interporosity flow in systems with:

irreqular fractures can be computed numerically from a scalar function, which

expresses the proximity of matrix material to the fractures, and is therefore

termed a "proximity function". This function can be easily calculated for any

given (regular or irregular) fracture distribution. Before we introduce the

concept of proximity function, it is desirable to further generalize the parti-

tioning scheme outlined above. This can be done by adopting a scaling procedure,

which in effect lumps several disjoint subcontinua together into one computational

volume element.

2.3 Scaling

Referring again to the basic MINC-partitioning as shown in Figure 2, one

can argue that often it may not be necessary to have separate volume elements

within each of the rock matrix blocks depicted in Figuré 2. Depending on the




of the blocks and on the distance from sinks oOr sources, thermodynamic
f{ions in corresponding continua in neighboring blocks may be very similar.

ofore it may be possible to lump corresponding continua from several blocks,

ied by index numbers in Figure 2, into one computational volume element.

tif

geometric parameters pertaining to such a lumped partitioning can be readily

of a simple scaling

Pt ained from those for a single matrix block by means

ration. For an idealized fracture distribution as shown in Figure 1, a domain

e yolume V contains g = V /D° matrix blocks. If corresponding continua
f n n

5
ithin the domain V, are lumped together, each sub-cont inuum appears ¢ times,

o that the total volume of continuum j becomes

Vi > VB = o Vj (N
rix block, and VH is the

ere, Vj is the volume of continuum j in one mat

olume of continuum j in the domain Vp-

similarly, each interface area appears o times in domain Vp so that

. . > A . = g A, . (2)
31’ 32 J1’ 32 317 Jz .
: _ is the total interface area between continua j, and j, in the
J1s 32 1 2

domain Vﬁ. Nodal distances, however, are independent of the number of

continua lumped together, so that

d. . +dt . =d. . (3)
31’ Jz J17 Jz 317 Jz
From the way in which the scaling laws (1) through (3) were derived, they are
matrix blocks are lumped

applicable and valid when an integral number of

(0 2 1,2,3 «-2)- It is very convenient, however to generalize by applying

the same scaling laws to domains of arbitrary size Or shape, including the

case where Vp << 03, i.e., 0 << 1. 1In this way 1t becomes possible to

associate a series of interacting continua to any reservoir subdomain,

including the limit Vp » 0. As will be discussed below, the concept of
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turé

It makes it possible to refer all geometric parameters £

scaling is even more important for stochastic than for regular frac

dlstrlbutlons.

sub-continua to aone single representative sub- domain of the reservolr, ral

than re-evaluating them for each volume element .

2.4 The mesh construction

In the MINC-method,

is obtained in two steps.

done for a porous medium-type system

» based on considerations of global geome

symmetry, and desired overall spatial resolution ("primary mesh"). The primar

mesh is specified in integral finite difference form by means of a set of volumi

elements V, (n = 1, ..., N), interface areas Aqms and nodal distances drm «

The second step is to sub-partition each grid block Vn of the primary mesh into

a sequence of interacting continua V. - (i =1, ..., 3) based on some specific
g nj \J P

characterization of the fracture distribution. Global flow ("interblock flow")

occurs exclusively in the fracture system, whereas rock matrix and fractures

~

interact locally within the grid blocks of the primary mesh ("intrablock flow").

Therefore, all "connectiong" (Aams dpm) of the primary mesh are assigned to

“he fracture system. Additional "intrablock" connections are generated to permit

"low between an and an+1 (n=1, ..., Ns =1, «.., 3J-1). The complete

alculational mesh, containing all primary volume elements, the connections for

)lobal flow in the fracture system, and all sub-continua and connections for

nterporosity flow, is referred to as the "secondary" mesh.



oncluding remarks

he MINC-method provides a rather substantial simplification of the complex

em of flow in.a naturally fractured rock mass. 1t is not a patent recipe,

én approximation whose validity should be carefully evaluated before it is

ied to specific problems. The concept of partitiohing the rock matrix

rding to distance from the fractures is expected to be very accurate for

xtain systems and processes, while giving adequate engineering accuracy in

Her s, but being poor or inapplicable in some areas.
At present, there is little quantitative information available regarding

e range of applicability of the MINC-method, and the accuracy which can be

hieved for different types of flow systems and processes. In this section we

sent some considerations which should serve as 2 guide in applications.

The central approximation made in the MINC-method is that fhermodynamic

onditions in the rock matrix are considered to depend only on the distance from

he nearest fracture. This is an approximation which, strictly speaking, will

lmost never be rigorously valid in actual flow problems. 1t is helpful, there-

"distance only" approximation, though

ore, to discuss conditions under which the

ot rigorously valid, will nevertheless accurately predict interporosity flow.

A favorable case for the MINC-method exists when (i) initial thermodynamic
; conditions in matrix blocks depend approximately only on the distance from the

t special case is uni form initial conditions in matrix

fractures (an importan

 blocks) , and when (ii) imposed transient changes in thermodynamic condit ions

iin the fractures occur in such a way that matrix blocks are sub jected to approxi-

mately uniform boundary conditions at all times. Even under these very restricted

conditions, the '"distance only" approximation is not strictly valid. It breaks

down near fracture intersections, because effects of interporosity flow to or
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from several fractures overlap. For the MINC-method to be applicable, ho
actually something less than validity of the ndistance only" approximatig
required. In fact, this approximation needs to be valid only "on the aver
in the sense that gradients of pressure and temperature, caléulated on thek
of the "distance only" approximation, will yield the proper total rates of.
and heat flow when fluxes are integrated over an interface area at a given
distance from the matrix block faces. Numerical and analytical studies per for,
by Lai et al. (1983) have shown that for a large class of problems this is ind
the case.

Lai et al. examined the flow of heat or fluid with small and constant
compressibility from regularly shaped matrix blocks with uniform initial condi-
tions, which are sub jected to 8 uniform step change in boundary conditions at tﬁeg
sur face. The analytical Fourier gseries solution available for this type of
problem yields curved isobaric of isothermal surfaces (Carslaw and Jaeger, 1959) .
The MINC-method on the other hand approximates these surfaces as planes which ang
parallel to the block faces, overpredicting thermodynamic parameters in some
parts of the sur face, while underpredicting them‘in others. Haowever, when total
flow rates across interfaces at a fixed distance from the block faces are computed,
by areal integration, these deviations average put to near Zero, yielding rates
which are accurate to within a fraction of a percent. It is to be expected that
the MINC-method should yield similarly accurate predictions for interporosity
flow rates in multiphase flow problems with capillarity and relative permeability
ef fects, as long as matrix blocks are sub jected to approximately uni form boundary
conditions.

Matrix blocks will experience approximately uniform boundary conditions
if spatial variations of thermodynamic conditions in the fracture system are

insignificant over block dimensions. generally speaking, therefore, condit ions
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e favorable for application of the MINC-method. if matrix blocks are "small"

pmparison to characteristic dimensions of the problem at hand. Where this is

A ihe case, interporosity flow will be poorly predicted by the MINC-method.

MINC-approximation may still be applicable in these cases, however, if only a

ﬂatively small number of matrix blocks are subjected to non-uniform boundary

nditions at any given time, with most interporosity flow involving matrix

m boundary conditions. This type of situation

ocks having approximately uni for

y arise in problems with propagating phase fronts (or thermal fronts). If

trix block dimensions are small in comparison to the spatial extent of zones

th different phase compositions (or di fferent temperatures), the matrix

ocks at the phase (or temperature) front will make a small contribution to

nterporosity flow, so that the MINC-approximation is valid for all except a few

which govern fluid

Further insight can be gained by examining the forces

flow in fractured porous nedia. These are (i) externally applied pressures,

(ii) viscous friction, (iii) capillarity, and (iv) gravity. Of these, the

first three are compatible with approximating thermodynamic conditions in the

matrix as depending on the distance from the fractures only. Gravity presents

g special problems, because it will introduce a directional dependencé of inter-

porosity flow. Furthermore, it can cause thermodynamic conditions in matrix

blocks to depend on the vertical component of distance, and it gives rise to

phase segregation in the fractures, with non-uniform boundary conditions for some

mattix blocks.
nish

e e Bt el b B At

It is easy to show that gravity effects on interporosity flow will va

for matrix blocks with no internal phase segregation, which are subjected to

uniform boundary conditions by the surrounding fractures. The gravity contri-

porosity flow for phase 8 in this case is (see equation A.3):

bution to the inter
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Here the mobility terms could be pulled in front of the integral, becaus
been assumed that thermadynamic conditions in the matrix would depend only-
distance from the surface. This is of course an oversimplification, becausg'
multiphase systems with different phase densities gravity will induce segregaf
both inside matrix blocks and in the fractures. Favorable conditions for appi
tion of the MINC-method will still exist if matrix block thickness is small
comparison to the thickness of layers with different phase composition.
This discussion may be summarized as follows:

- The MINC-approximation is expected to be most accurate for flow
systems with ubiquitous fractures and "small" matrix blocks, in
which most blocks experience approximately uniform boundary
conditions at all times.

- Generally favorable for application of the MINC—method are single-phase-
flow problems, or problems with low matrix permeability, where inter- V
porosity flow is méstly heat conduction. In these cases gravity
effects on interporosity flow will be either absent or small.

- Multiphase systems can be handled if matrix block dimensions are
small in compariéon to dimensions of regions with different phase
compositions, or if density differences between the phases are "not
too large".

- Transport of chemical species in fractured rock masses should be
amenable to a MINC-type representation, as species migration between
matrix and fractures should be little affected by gravity. This

will hold for chemical polluﬁion in fissured systems, and for
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processes of ore formation in veins. Wall rock alterations in
hydrothermal miﬁeral systems are known to often depend primarily on
the distance‘From the veins.

‘An attractive area of application may be in the chemical processing
industry for heterogeneous reactions between a solid granular material,
and fluids or gases (Rasmuson and Neretnieks, 1950).

The MINC-approximation is not applicable for systems Qith large matrix

blocks which are subjected to non-uniform boundary conditions for extended

time periods. This situation may arise in certain fractured petroleum
reservoirs.

- The MINC-approximation is not valid for processes operating on a very
long time scale, for which the matrix acts as an avenue for through-flow
rather than one-way flow. An example of this would be a steady-state

flow field in the matrix/fracture system.

3. Proximity Functions

3.1 The concept

For any given reservoir subdomain with known fracture distribution, a
function V(x) can be defined, which represents total matrix volume V within
a distance x from the fracture faces. Note that the volume V will generally
consist of a finite number of disjoint multiply-connected regions, representing
a quite complex topological structure (see Figure 3c). If V4 is the volume
of the subdomain, and ¢ is the volume fraction (average porosity) of the
fracture system, the volume of the fracture coptinuum within Vg4 is
Vq = ¢1.V0. It is convenient to introduce a "proximity function"”
PROX(x), which expresses, for a given reservoir subdomain V5, the total

fraction of matrix volume within a distance x from the fractures. Noting

that the total matrix volume in domain Vy is




1T

Vm = (1—¢1) Vo
we have

Vix) _ V(x)

V. - (1-¢1) v,

PROX(x) =

5.2 Relationship to discretization

In the MINC-method, a discretization is adopted for the rock matrix
(see Figure 4) whereby all matrix volume within a distance x9 from the

fracture faces will be lumped into one computational volume element (or

subcontinuum) Vo; matrix volume within a distance larger than x2 but less
than x3 will be lumped into V3, etc. This is illustrated in Figure 4 for a
regular fracture network, but it is evident that the same procedure can be
applied to arbitrary irreqular fracture distributions, see Figure 3c. To
define flow towards or away from the fractures, it is necessary to specify
interface areas and nodal distances between the matrix sub-continua. From
the definition of the proximity function as given above, the interface area
for flow at distance x is simply

dv

AG) =By v d PROX (x)

I (7)

In conventional porous medium-type simulation methods with simply-
connected grid blocks, the computational nodes are points, usually located
at the center of a volume element. For the multiply-connected volume
elements of the MINC-method, the element nodes become nodal surfaces, which
are located half-way between the inner and the outer surface of an element.
(Note that the interfaces between elements will not in general be halfway
between neighboring nodal surfaces). A discretization based on distance

from the fractures can be uniquely specified by means of a set of volume
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63 (j=1, ++-s 3). Here ¢q is the average fracture porosity, and the

¢ denote volume fractions in the matrix at increasing distance from

ctures. Obviously we must have

J
.= 1 (8)
2% |
5=
- from this constraint, the ¢4 (j:Z, ..., J) are arbitrary, but for

. accuracy the volume fractions near the fractures (¢, ¢3, «..)

) =V . ¢, (9)

:] .
EE: Vo3 = Vi (10)

n the "secondary" mesh {an; n=1, ..., N3 j=1, ...,J} each of the primary

rid blocks V4q (representing fractures) interacts with its neighbors
hrough the fracture continuum, and with a one-dimensional string Vp2,
n3s+-+y Vo of nested grid "blocks " in the matrix (see Figure 5). The

istances X 3 to which the Vpj extend can be simply obtained by inverting
he proximity function. We have, for j=2, 3, ..., J
J

(x) > Al (1)

PROX(x .) = S 11
J 1—¢1
ji=2

he interface area between elements Vpj and Vpjeq. is simply A(xj) as. given
by equation (7), with V5 replaced by the volume Vj of the primary element:

d PROX(x)

= (-0 V, S (12)

A

nj, nj+1
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1t should be noted that Equation (12) implies an application of the "s
concepts, as outlined in section 2.%3. The proximity function of a flog
systemvis defined once and for all for a certain representative domain V
and is normalized to unit matrix volume [cf. Equation (6)]. fherefore, th
derivative dPROX/dx gives an interface area per unit matrix volume, which
Equation (12) is properly scaled to the matrix volume present in Vpn.

Wnile this procedure is practically convenient, it is recognized that :

naturally fractured systems may exhibit "scale effects" (Long et al.,

1982); i.e., average properties may depend on the scale of observation. The !
use of one single proximity function for a flow system as implied in Equation;

(12) ignores scale effects. 1f it is desired to take such effects into aécounﬁ :

one could use a different proximity function PROXp(x) for each volume element

V, of the primary mesh.

Nodal distances are given by (§=2, ooy 3-2)

_ 3! i, 4 3
dnj, nj+1 =~ 2 * 2
_ 1 (13)
=7 g1 T xj-1)
The fracture nodes are placed at the fracture-matrix interface, so that
g .2 \ (14)
nlt, n2 =~ 2
The innermost nodal distance requires special consideration. Writing
X - X
J-1 J-2
S il S
dn3—1, J - 2 + Dy (15)

we introduce the distance D3y of the nodal surface with index J from the
innermost interface area, And-1, nd- D3 should be chosen in such a way that

the finite difference approximation for préssure - and temperature - gradients




}the most accurate estimate for the actual gradient at interface An3_1’ nls

hat flow between Vyj_j and Vp3 will be described accurately. In a trans-

ctangular matrix blocks (cf. Warren and Root, 1963):

Jable 1. RQuasi-steady flow distances for rectangular matrix blocks.

Dimensions of Dimensions of Average linear
matrix blocks innermost blocks dimension of : D3
innermost block

a u=a-2x73j.1 £ =u /6
u=a-2x3j_1 2u
- LUV
v=Dh-2x73_1 %= U4V 2/8
u=a-2x7j.1
o Suvw
v=b-2x3.1 2 = avwruw 2/10
c Ww=C-2X7J_1

GMINC uses these values for Dj irrespective of the shape of the matrix blocks.
This approximation will be accurate provided the discretization is not too

coarse (i.e., ¢7 should not be much larger than ¢3.9).

4. General Description of Program GMINC

GMINC carries out the numerical operations necessary to transform a porous

medium-type "primary" mesh, into a "secondary" mesh which incorporates global
flow in the fracture system, and local "interporosity" flow between fractures and

rock matrix.
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The input to GMINC consists of:

(a) a "primary" mesh, as would commonly be used to model transport ‘i
porous media. The primary mesh is specified in integral finite
difference form by means of a set of volume elements Vo (n=1, ..a
interface areas Anp, and nodal distances dpgp-.

(b) parameters OT functions which characterize fracture distributions
GMINC contains a proximity function routine npROX(x)", which offerss
a choice of several different proximity functions and parameters
for reqularly shaped matrix blocks. Generally speaking, the user
will have to write his/her own proximity function subprogram,
appropriate for the fracture distribution at hand, and incorporate
it into GMINC. Appendix B gives some illustrative examples.

(¢) a set of parameters specifying the discretization procedure to be
applied for the fractured system. As discussed above, this is
done in terms of a set of volume fractions 3 (j=1y ooy 3,
with J denoting the total number of interacting continua.

CMINC has a very simple main program, which calls three subroutines:
PRIMESH, GEOMINC, and MINCME. PRIMESH reads all input data, namely, the
parameters of the "primary" mesh, and the parameters for the volume fractions
of the sub-partitions. GEOMINC computes all geometric parameters (element

| volumes, interface areas, nodal distances) for the secondary mesh, normal ized

to a domain of unit volume. MINCME works sequentially through the volume

elements of the primary mesh and, using the scaling procedure outlined in
section 2.3, scales the parameters generated by GEOMINC to generate fhe
secondary mesh. Routine GEOMINC uses the proximity function subprogram
PROX(x), and a subroutine INVER, to solve equations (11) and (12) for nodal

distances and interface areas, respectively. Inversion of PROX(x) is

B
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jed out by means of a sequence of bisecting nested intervals (subroutine

Three disk files are used by the program. TAPE4 holds a list of primary

lume elements, TAPE14 holds the output of volume elements as obtained from

he MINC partitioning process, and TAPE1S5 holds all interface areas and nodal

jistances of the secondary mesh. TAPE14 and TAPE15 are compatible with
HAFT79 or MULKOM input formats; merged together they make up the "MME SH
jle required by these simulators.
Volume elements are referred to by five character "names", with the following

convention. The first two characters are arbitrary (alphanumeric) . Character #3

is alphanumeric on input, and on output is changed into " (for fracture elements)
or "A" through "Z" (for matrix elements). Here "A" signifies the matrix element
which is closest to the fractures, "B" is the second closest element, etc. The
last two characters of an element name are numbers. Examples will be given in

Section 6.
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5. Preparation of Input Decks for GMINC

The input of GMINC is organized in "blocks", as indicated in the f0110>

table.

Table 2. Input Data Blocks

Block Description
ELEME List of elements of primary mesh.
CONNE List of interfaces (connections) of primary
mesh.
PART Parametprs for defining the partitioning procedure
ENDMI one card closing the GMINC input deck.

(Last card)

The data blocks NELEME™, "CONNE", and "PART" can be provided in arbitrary
order. A sequence of identical glements OT connections can be specified on a
single data card. Figure 6 summarizes the input dataj the detailed descrip-

tion of input is as follows.

FLEME introduces element in formation.

card ELEME.1 Format (A3, 12, 215, A3, A2, E10.4)
o EL, NE, NSEQ, NADD, MAT MAZ, VOLX

EL, NE 5.character code name of an element. The first three characters
are arbitrary, the last two characters must be numbers.

R mm—— .



- NSEQ

' NADD

MAT, MA2

VOLX

| Card ELEME.Z

//ﬁDNNE

Card CONNE. 1

EL1, E1, NET
EL2, E2, NE2
NSEQ
NAD1
NAD2

number of additional elements having the same volume and
belonging to the same reservoir domain.

increment between the code numbers of two successive elements.
(Note: the maximum permissible code number NE + NSEQ * NADD
is 99.)

a five character identifier specifying the reservoir domain to
which the element belongs. The first character must not be an
"M'. On output, the fractured medium is assigned the same
domain identifier as was input. For rock matrix elements,

the first character of the material identifier is changed intoc
HMH . .

element volume (m’).
Repeat card ELEME.1 for any number of elements desired.

A blank card closes the ELEME data block.

introduces information for the connections (interfaces)
between elements.

Format (A2, A1, 12, A2, A1, 12, 415, 4E10.4)
EL1, E1, NE1, EL2, E2, NE2, NSEQ, NAD1, NAD2, ISOT, D1, DZ,
AREAX, BETAX

code name of the first element .

code name of the second element.
number of additional connections in the sequence.

increment of the code number of the first element between
two successive connections. :

increment of the code number of the second element between
two successive connections.

Y
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D1
D2

AREAX

BETAX

Card CONNE.2Z

Note:

I

ART TYPE  introduces information on the partitioning procedure, and selects
the type of proximity function to be used.

PART

TYPE
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set equal to 1, 2, or 33 specifies ahsolute permeabi
to be PER(ISOT) for the materials in elements (EL1, £
and (EL2, E2, NE2), where PER is read in block ROCKS
SHAFT79 or MULKOM. This allows assignment of differe
permeabilities, e.g., in the horizontal and vertical di

Distance (m) from center of first and second element, re
tively, to their common interface.

inter face area (m2)

cosine of the angle between the gravitational acceleration
vector and the line between the two elements.

Repeat card CONNE.1 for any number of connections desired.

a blank card closes the CONNE data block.

1f no interblock connections are desired, it is still
necessary to input the data block "CONNE". In this case the
card "CONNE" would be followed immediately by a blank card.

Format (2A5)
PARTH, TYPE

identifier of data block with partitioning parameters.

a five-character word for selecting one of the six differ-
-ent proximity functions provided in GMINC.

ONE-D: a set of plane parallel infinite fractures with matrix
block thickness between ne ighboring fractures equal to
PAR(1) .




TWO-D:

THRED:

STANA:

STANB:

STANT:

=S

two sets of plane parallel infinite fractures, with
arbitrary angle between them. Matrix block thickness is
PAR (1) for the first set, and PAR (2) for the second
set. If PAR (2) is not specified explicity, it will be
set equal to PAR(1).

three sets of plane parallel infinite fractures at right
angles, with matrix block dimensions of PAR(1), PAR(2),
and PAR(3), respectively. If PAR(2) and/or PAR(3) are
not explicity specified, they will be set equal to PAR(1)
and/or PAR(2), respectively.

average proximity function for rock loading of Stanford
large reservoir model (see appendix B).

proximity function for the five bottom layers of Stanford
large reservoir model.

proximity function for top layer of Stanford large reservoir

model.

Note: a user wishing to employ a different proximity
function than provided in GMINC needs to replace the
function subprogram PROX(x) with a routine of the
form:

FUNCTION PROX(x)
PROX = (arithmetic expression in x)

RETURN

END

It is necessary that PROX(x) is defined even when x exceeds the maximum
ible distance from the fractures, and that PROX = 1 in this case. Also,
the user supplies his/her own proximity function subprogram, the parameter
has to be chosen equal to ONE-D, TWO-D, or THRED, depending on the dimen-
ality of the proximity function. This will assure proper definition of
smost nodal distance (see section 3.2).

R bty S e P O e o, 7 T T e e e e




Card PART.1

NVOL

WHERE

PAR(1), I=1,7 holds parameters for fracture spacing (see above).

Card PART.2.1, 2.2, etc.

VOL(I)

ENDMI

24—

Format (213, A4, 7E10.4)

J, NVOL, WHERE, (PAR(1), I=1,7)

total number of multiple interacting continua (J < 25).

total number of explicitly provided volume fractions (NvOL < 3,
see section 3.2). If NVOL < J, the volume fractions with indices
NVOL+1, ..., J will be internally generated; all being equal and
chosen such as to satisfy Equation (8).

specifies whether the sequentially specified volume fractions
begin with the fractures (WHERE=OUTb) or in the interior of
the matrix blocks (WHERE = INbb) .

Format (BE10.4)
(VoL(I), I = 1,NVOL)

volume fraction (between 0 and 1) of continuum with index 1
(for WHERE = 0OUTH) or index J+1-I (for WHERE = INbb) . NVOL
volume fractions will be read. For WHERE = OUTh, I = 1 is the
fracture continuum, I = 2 is the matrix continuum closest to the
fractures, I = 3 is the matrix continuum ad jacent to I-2, etc.

closes the GMINC input deck.
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Sample Calculations

The problems pfesented in this section are intended to illustrate applica-
ons of GMINC. It was pointed out before that the partitioning scheme for a
fractured reservoir mesh works sequentially through the volume elements of
Ethe primary mesh on a grid-block-by-grid-block basis. The calculational
ocedure is the same irrespective of whether the primary mesh has a few or
ahy grid blocks, and irrespective of the dimensionality of the primary mesh.
: Therefore, it is sufficient to consider small primary meshes in the following

xamples.

(a) One-block problem

The GMINC input deck for this example is given in Figure 7 (the
ffile "GMINCG" used here is a compiled version of GMINC). The primary mesh
consists of just one grid block, with no primary (interblock) connections
present. It is partitioned into 10 continua, with volume fractions increasing
? away from the block faces. ‘The type of proximity function chosen ("THRED")
corresponds to three orthogonal fracture sets. Matrix block dimensions are
PAR(1) = PAR(2) = PAR(3) = 50 m, with PAR(ZS and PAR(3) assigned default
values, as these entries are left blank on the data card. Figure 8 shows the
taele of geometry data as generated by GMINC, scaled for a domain of unit
volume. The interface data are always printed between the two volume ele-
ments to which they correspond. The complete secondary mesh file is shown in
Figure 9. It was obtained by merging the files TAPE14 (holding elements) and
TAPE15 (holding connections). On the element header card there appears same
'information on the partitioning. The mesh file is compatible with SHAFT79:or

MULKOM input formats.

i
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(b) vertical Column

The primary mesh in this example consists of a vertical columng

2 cross sectional area (see

ive grid blocks with 100 m thickness and 1 km
igure 10). There are two fracture sets, with fracture faces separated b

nd 40 m distance, respectively. Sub-partitioning is made into 6 continua
¢ assigned by default. Figure "

vith volume fractions for continua #5 and

shows the geometry data as generated by GMINC, and Figure 12 gives the comi

plete mesh file for this case.

(c) Radial flow

put deck for a one-dimensional radial mesh of

Figure 13 shows an in

H = 100 m thickness. The first grid block has a radius Rq = 1 m, and subsequeﬁ

radial spacings are incremented according to MRpy1 = & ° ARp, with o =
2 .2326074, so that Rg = R (8-1)/(a-1) = 500 m. Sub-partitioning is made

allel fractures with matrix

into 5 continua, assuming one set of plane par

block thickness of 10 m between fracture faces. The geometry data computed by

e 14, and Figure 15 gives the complete secondary mesh
R

hat, because of the one-dimensional fracture geometry, all interface .

resentation of

GMINC are shown in Figur

file. Note t

areas within a given volume are equal. A schematic graphic rep

the secondary mesh is shown in Figure 5.
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dimension of matrix blobk (m)
inter face area (m2)

dimension of matrix block (m)
dimension of matrix block (m)
specific heat (J/kg°C)

nodal distance (m)

fracture spacing (m)

nodal distance for continuum J (m)

‘mass flux (kg/mZ + s)

gravitational acceleration vector (9.81 m/s2)
heat flux (W/m2)

specific enthalpy (J/kg)

number of interacting continua

absolute permeability (m?2)

heat conductivity (W/m°C)

relative permeability for phase 8, dimensionless
unit normal vector

number of volume elements; also number of Monte
Carlo points

pressure (Pa)

volumetric rate of mass generation (kg/m> - s)
volumetric rate of heat generation (3/m> - s)
radial distance (m)

temperature (°C)

specific internal energy (J/kg)

volumetric internal energy (3/m?)
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Nomenclature (continued)

V. volume (m?)

Vo, reference domain (m?)

X  distance from matrix block face (m)

§  fracture aperture (m)

) volume fraction

I surface area (m2)

p density (kg/mB)

o number of matrix blocks in domain' Vp

ug viscosity of phase g (Pa - s)
Subscripts

cap capillary

,F

fracture

index number of interacting continuum
liquid

matrix; also index number of volume element
index number of volume element

rock

vapor

phase (8 = liquid, vapor)
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ndix A: Mass - and energy - balances

The simulators SHAFT79 and MULKOM solve discretized versions of

g following mass-and energy-balance equations:

’ d —
T g f ¢pdv = f F.ndr + fqdv (A1)
V T
n
% [w” /gg fw (A.2)
V r V
n

ass flux is approximated by Darcy's law, which expresses a momentum balance

ith negligible inertial force

k
8 ,
= EE: F o= -k z —- P - A.
B =1iquid, B
vapor

ere we have written mass flux as a sum over liquid and vapor contributions, as is

ppropriate for the geothermal case. However, MULKOM can handle flow problems with

ny number of phases and components, incorporating suitable generalizations of the

quations presented here.

Energy flux contains conductive and convective terms

G = - KVT h F .
+ E Fa (A.4)

i L
nd the volumetric internal enmergy of the rock/fluid mixture is

U= gpu + (1-¢)pCpT (A.5)
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The main assumptions made in the above formulation are as follows:
the reservoir system is approximated as a mixture of rock and single—compé
fluid in liquid and vapor form. (2) Liquid, vapor and rock are in local tﬁ;
dynamic equilibrium, i.e., at the same temperature and (bulk) pressure, at
times. (The effective pressure in phase B is the sum of bulk phase and capil:
pressure, Pg = P + P oy g.)

It is to be noted that the equations given above hold for porous and fra
tured medié alike. Experimental work has established that fracture flow obeys
Darcy's law, with fracture permeability related to fracture aperture as
(Witherspoon et al., 1980),

ke = 62/12 (A.6)




fopendix B. Examples of proximity functions

a) One fracture set

The simplest case is a one-dimensional set of plane, parallel, equidistant,
nfinite fractures with apertufe § and spacing D. The thickness of matrix

locks between neighboring fractures is: a = D-8 (=PAR(1) on input, card PART.1).
To obtain the proximity function, we consider a symmetry element of unit thickness,
" centered about one fracture. The total matrix volume in this domain is, per unit
fracture length, V, = a. The matrix volume within a distance x. from the

. fracture faces is V(x) = 2x, so that

Tl for x < a/2
PROX(x) = m (B.1)

1 for x » a/2

(b) Two fracture sets

For two perpendicular sets of plane, parallel, equidistant, infinite
fractures the matrix blocks have a rectangular cross section with lengths a
and b (corresponding to input parameters PAR(1) and PAR(2), respectively, on
card PART.1) The matrix volume per block, per unit of thickness, is Vp =
a*b. Within a distance x from the fracture faces, the matrix volume is
V(x)za*h -(a-2x)+(b-2x) = 2(a+b)x - 4x2,

Therefore, the proximity function is

2
a+b X ‘ i
2 = x - 4o for 2x< min (a,b)

PROX(x) = (B.2)

1 for 2x>» min (a.b)
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The same formula holds when the two fracture sets intersect at an arbitrary
angle. In that case, a and b are the matrix block dimensions perpendicular
to the fracture sets.

(c¢) Three fracture sets

For three perpendicular sets of plane, parallel, equidistant, infinite
fractures, the matrix blocks are parallelepipeds with dimensions a, b, and ¢
(corresponding to input parameters PAR(1), PAR(2), and PAR(3), respectively,
on card PART.1). The matrix volume within a distance x from the fractures
is, per block, V(x) = abe - (a-2x)+(b-2x)+(c-2x). Defining u=2x/a, v=2x/b,
and w=2x/c, the proximity function can be written

uvw=(uv+uw+vw) +(u+v+w) for 2x<min(a,b,c)
PROX(x) = (B.3)

1 for 2x2>min(a,b,c)

(d) Stanford large reservoir model

For a number of years a laboratory model of a geothermal reservoir has
been used at Stanford university for heat extraction experiments (Iregui et
al., 1978). The system consists of a large pressure vessel which presently
holds a loading of regularly shaped granite blocks (Hunsbedt et al., 1982).
There are six layers, each of which has five rectangular blocks and four blc
whose cross sectibns are isosceles rectangular triangles. For the rectangul
blocks, the proximity function is given by (B.3). For the triangular 5locks
straightforward calulation gives

3 |
(5+22) ¥ - [m{z’ , 42 JE)J 2 +<£J£-_bﬁ_ . .g.)x

ab b ab

PRUXt(x) = b

for x <
Z+V/E
b

1 for x » 2+VG?

Here a is the height of the triangular blocks, and b2/2 is their cross secti

(8.

area.
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% heat transfer modeling it is convenient to consider averaged proximity
tions in each layer. Denoting the proximity function for the rectangular

B focks by PROXp(x), the average is
PROX_, (x) = 2 PROX_(x)+ = PROX, (x) | (8.5)
rt -7 r 7 t .

ese functions are plotted in Figure 16.

B{c) Stochastic fracture distributions

In the general case of arbitrary irregular fracture distributions, proximity
functions can be computed by means of Monte Carlo techniques. The method as
developed by Pruess and Karasaki (1982) can be summarized as follows. First

it is necessary to obtain a specific realization of the stochastic distribution
;for a domain V,, and to eliminate isolated and dead-end portions of fractures.

L This is accomplished with the methods developed by Long et al. (1982). Then

f’a large number N of random points is generated in V4. For each point, the

?minimum distance from the fractures is calculated, and all N points are
sorted in order of increasing distance. The value of the proximity function
for a certain distance x is proportional to the number of points, N(x), with

a distance less or equal to x from the fractures. Specifically,

PROX(x) = —NX) (B.5)
The Monte Carlo procedure provides a discontinuous definition of the prox-
imity function. Before this can be input to GMINC it must be smoothed, e.g.
by fitting with a succession of cubic splines. Figure 17 shows an example of

a two-dimensional stochastic fracture distribution. The smoothed proximity

function obtained with 100,000 random points is shown in Figure 18.
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PROGRAHN GMINC(INPUT,OUTPUT,TAPEQ,TAPEI4,TAPE15)

ik ¥ GMINC WAS DEVELOPED BY KARSTEN PRUESS :
' AT LAWRENCE BERKELEY LABORATORY. ¥¥&kkkkkkki¥

THE PROGRAM GENERATES ONE-, TW0-, OR THREE-DIMENSIONAL MESHES
FOR FLOW SIMULATIONS IN FRACTURED POROUS MEDIA.

GMINC IMPLEMENTS THE METHOD OF
MULTIPLE INTERACTING CONTINUA ({MINC)
AS DEVELOPED BY PRUESS AND NARASIMHAN.

REFERENCESQ

(1) K. PRUESS AND T.N. NARASIMHAN, A PRACTICAL METHOD FOR
MODELING FLUID AND HEAT FLOW IN FPKACTURED POROUS MEDIA,
PAPER SPE-10509, PRESENTED AT THE SIXTH SPE-SYMPOSIUM ON
RESERVOIR SIMULATION, NEW ORLEANS, LA. (FEBBUARY 1982) .

(2) K. PRUESS AND T.N. NARASIMHAN, ON FLUID RESERVES AND THE
PRODUCTICN OF SUPERHEATED STEAM FROM FRACTURED, VAPOR-
DOMINATED GEOTHERMAL RESERVOIRS, J. GEOPHYS. RES. 87 (B11),
9329-9339, 1982.

(3) K. PRUESS AND K. KARASAKI, PROXINITY FUNCTIONS FOR MODELING
FLUID AND HEAT FLOW IN RESERVOIRS WITH STOCHASTIC FRACTURE
DISTRIBUTIONS, DAPER PRESENTED AT EIGTH STANFORD WORKSHOP
ON GEOTHERMAL RESERVOIR ENGINEERING, STANFORD, CA-
(DECEMBER 1982).

(4) K. PHRUESS, GMINC - A MESH GENERATOR FOR FLOW STHULATIONS IN

FRACTURED BESERVOIRS, LAWRENCE BERKELEY LABORATORY REPCEKT
LBL-15227, 1983.
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o ——_gEAD INPUT DATA AND PREPROCESS MESH FLLE FOR SEQUENTIAL ELEMENTS--
CALL PRIMESH

- —GENERATE INTRABLOCK GEOMETRICAL QUANTITIES FOR A DOMAIN

2 OF UNIT VOLUME -----
CALL GEOMINC

e —GENERATE COMPLETE MESH FILE --=—--—-<-==<--==-—==---====--ommmommamos

CALL MINCHE

ST0P
END
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SUBROUTINE PRLIMESH

COMMON/MINCDAT/J,NVOL,WHERE,VOL(ZS),A(25),D(25)
COMMON /PEOXI/L,TYPE(10) ,PAR(7)

COMMON/CON/ABC (26) .

DIMENSION VEK (4) , KORD (5, 18) ~

DATA VEK /SHELEME,5HCONNE,S5HPART ,SHENDMIL/
DATA TYPE/SHONE—D,SHIWO—D,SHTHRED,SHSTANA,SHSTANB,SHSTANT/ :
DATA ABC/IHA,1HB,1HC,1HD,1HE,1HF,1HG,1HH,1HI,1HJ,1HK,1HL,1HM,1H
X1HO,1HP,1HQ,1HB,1HS,1HT,1HU,1BV,1HW,1HX,1HY,1HZ/

C
IK=0
5019 IK=IK+1
READ 5020, (WORD (IK,I),I=1,16)
5020 FURMAT (16A5)
C
-DOY00 K=1,4
40O IF (WORD(LK,1).EU.VER(K)) GOT0920
PRINT 901,WORD {IK,1)

G001 FORMAT (# HAVE READ UNKNOWN BLOCK LABEL "#,AL,#%" --- ASSUME ALL#
¥4k NEEDED DATA HAVE BEEN READ AND RETUEN TO MAIN PROGRAME)
RETURN
C
920 GOTO(1100,1200,1300,1400),K
C

C#****READ ELEMENT DA’IA,**************************#************#********
¢ ; ‘
1100 WRITE(4,1101) (WORD(IK,I),I=1,16)
1101 FORMAT {16A5)
1102 READ 10,EL,NE,NSEQ,NADD,MAT,HA2,VOLX
10 FORMAT (A3,12,2I5,A3,A2,E10.4)
IF (EL. EQ.3H  .AND.NE.EQ.0) GOTO4O

c
NSEQ1=NSEQ+1
C
C-—---GENERATE FILE OF ELEMENT DATA.
o

pO113 I=1,N5201

N=NE+ (I-1)*NADD
113 WRITE(4,114) EL,K,dA1,Ma2,VOLL
114 FORMAT (A3,12,10XA3,A2,E10.4)

GCTO1102
C
G- END OF ELENENT LATA.----==< e mmmmmm e m ———————— —————
40 WEITE(4,41)
41 PORMAT (¥ #)
GLTO5019 ,
c

Cetxk*xkREAD CONNECTION QI_\'IA_#**##******#**##*t=¢******#*#********#t#******

c

1200 WRITE(15,1201)
1201 FCRMAT (#CONNE#)
NOCGNT =0
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b2 READ 20,EL1,E1,NE1,EL2,E2,NE2,NSEQ,NAD1,NAD2,ISOT,D1,D2,AREAX
X,BETAX

20 FORMAT (A2,A1,12,A2,A1,12,4I5,4E10.4)

IF (EL1.EQ.2H JAND.E1.EQ.1H .AND.NE1.EQ.0) GOT05019
IF(EL1.EQ.2H++) GOT05019

NSEQ1=NSEQ+1
---GENERATE FILE OF CONNECTION DATA.

. D023 I=1,NSEQ1
| NOCONT=NOCONT+1
N1=NE14+ (I-1) *NAD1
N2=NE2+(1-1) ®*NAD2
23 WRITE(15,24) EL1,N1,EL2,N2,1S0T,D1,D2,AREAX,BETAX
24 FORMAT (a2,1H1,12,A2,1H1,12,15XI5,4E10.4)
GOT01202

————END OF CONNECTION DATAa---———=m=m————==————— —————————m - B
«¥**READ DATA FOR MULTIPLE INTERACTING CONTINUA. %®¥disksirdikihkhkaskk

ex*%x% xJ* IS THE NUMBER OF MULTIPLE INTERACTING CONTINUA.

&

ex*%% *NVOL* (.LE.J) IS THE NUMBER OF EXPLICITLY SPECIFIED VOLUME

¢ FRACTIONS.

)

ek % 4% *YHERE* SPECIFIES WHETHER EXPLLICITLY PKOVIDED VOLUME FRACTIONS
ARE GIVEN STARTING AT THE OUTSIDE (FRACTURE) OR INSIDE (MATRIX).

k

«t%x%% ¥*PAR* 1S AN ARxAY WITH PARAMETERS FOR SPECIFYING FRACTURE

« DISTRIBUTIONS. .

1300 CONTINUE
D0Y02 L=1,10
IF (WORD (IK,2) -EQ.TYPE(L)) GOTO 903
Y02 CONTINUE
PRINT 904,WORD (IK,2)
904 FORMAT (¥ HAVE READ UNKNOWN PROXIMITY FUNCTION IDENTIFIER *#AS5,#*
{---  STOP EXECUTION#)
STOP
903 CONTINUE
----- INDEX *L* LABELS THE TYPE OF PROXIMITY FUNCTION SELECTED.

READ 1,J,NVOL, WHERE, (PAR(I),I=1,7)
1 FORMAT (2I3,A4,7E10.4)

————— READ A SET OF VOLUME FRACTIONS-----
IF (WHERE.EQ.4HOUT ) READ 2, (VOL (M) ,M=1,NVOL)
IF (WHERE.EQ.UHIN ) READ 2, (VOL(J+1-M) ,M=1,NVOL)
2 FORMAT (8E10.4)
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Cmom—- END OF MINC-DATA —---=-- e e e e
C
IF((L-EQ.2 .OR. L.EQ.3) .AND. PAR(2).EQ.0.) PAR(2)=PAR(1)
1F (L.EQ.3 -AND. PAR(3).EQ.0.) PAR(3)=PAR(2)
GGTO5019
C
1400 RETURN
END
C
C
C
SUBROUTINE GEOMINC
C
DIMENSICN X (25)
COMMON/MINCDAT/J, NVOL, WHEKE, VOL (25) ,A (25) , D (25)
COMMON/PKROXI/L,TYPE(10),PAR(7)
COMHMON/CON/ABC (26)
DATA DELTA/1.E-8/
C
IF (NVOL.GE.J) GUTO3
c
C-m--- COME HERE TO ASSIGN EQUAL VOLUMINA TO SUBDIVISIONS WHICH HAVE NOT
C BEEN EXPLICITLY SPECIFLED-----
C
! VEX=0.
i DG4 M=1,NVOL
IF (WHERE. EQ. 4HOUT ) VEX=VEX+VOL (H)
g 4 IF(WHERE.EQ.4HIN ) VEX=VEX+VOL(J+1-M)
} C VEX IS THE TOTAL EXPLICITLY ASSIGNED VOLUME FRACTION.
] C
IF (VEX.GE.1.) GOTO10
; €
YF={1.-VEX) /FLOAT (J-NVOL)
| Cmmmm- VF IS THE VOLUME FRACTION FOR PARTITIONS WHICH ARE NOT
| C EXPLICILLY ASSIGNED.
NVOL1=NVOL+1
DC5 M=NVOL1,Jd
IF (WHERE. EQ.UHOUT ) VOL (M) =VF
5 IF (WHERE.EQ.UHIN ) VOL(J+1-M4)=VF
GOTO3
C

10 CONTINUE
Cmm COME HERE IF EXPLICITLY ASSLIGNED VOLUMINA EXCEED 100%-----
PKINT 11,VEX
11 FORMAT (# PROGRAM STOPS BECAUSE TOTAL VOLUKE VEX = #E12.6,

L# > 100% --- NEED TO CORRECT INPUT DATA#)
STGP

C

3 CONTINUE
C
C-----NOW FIND DISTANCES FROM FRACTURES WHICH CORRESPOND TO
c DESIRED VOLUME FKACTIONS.
C INDEXING STARTS AT THE OUTSIDE; I.E. *1% IS THE OUTERMOST
C VOLUME ELEMENT, AND *J% 1S THE INNERMOST ONE.

- \ |_
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-INITIALIZE TOTAL VOLUME FRACTION.
TvoL=0.

--FIRST INTERFACE WILL BE AT FRACTURE FACE.
D{1)=0. i
A(1)=(1.-VOL(1))*PROX(1.E~10)/1.E-10 , i

—~INITIALIZE SEARCH INTERVAL.
XL=0.
XR=VOL (2) /A (1)
DO 30 #=2,J
-—--COMPUTE TOTAL FEACTION OF MATRIX VOLUME.
TVOL=TVOL+VOL (1) / (1.~-VOL (1))
IF(M.EQ.J) TVOL=1.-1.E-9
CALL INVER (TVOL,XMID,XL,XR)
X (M) =XMID

XMD=XMID*DELTA
A{M)={(1.-VOL(1))* (PROX (XMID+XH4D) -PROX (X4ID-XMD)) /(2. *XMD)

D(M)=(X(H)-X(4-1)) /2.

----- PUT LEFT END OF NEXT ITERATION INTERVAL AT PRESENT X.
XL=XMID

30 CONTINUE
R COME HERE TO COMPUTE A QUASI-STEADY VALUE FCR INNERMOST
NODAL DISTANCE..

GOTO (41,42,43,44,45,46,47,48,49,50),L

C
41 CONTINUE
e ONE-D CASE.
D(J)=(PAR(1)~2.*X (J-1)) /6.
. GOTO 40

42 CONTINUE
L TWO-D CASE.
U=PAR (1) -2.*X (J-1)
V=PAR(2) -2.%X{J~1)
D(J)=UxV/ (U4.*(U+V))
GOTO 40 :
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43 CONTINUE
Cmmm—= THRED CASE.

U=PAR(1)-2%X (J-1)
V=PAR (2) =2%X (J-1)
W=PAK (3) -2%X{J-1)

D (J) =3.%U*V*R/ (10 % (URV+VER+U¥H) )

GOTO &9
C
44 CONTINUE
45 CONTINUE
46 CONTINUE
47 CONTINUE
48 CONTINUE
49 CONTINUE
50 CONTINUE
D (J) = (X (J) -X(JI-1)) /5.
C
40 CONTINUE
C
C-----PRINT OUT GEOMETRY DATA.
PRINT 27
27 FORMAT (1d1,/# s=szz===zcz===z======== GEOMETRY DATA, NORMALIZED
XDOMAIN OF UNIT VOLUME :::::::::::::::::::::::::#//)
C
PRINT 23
23 FORMAT (# CONTINUUN IDENTIFIER VOLUME NODAL DI!
XE INTERFACE AREA INTERFACE DISTANCEG#)
PRINT 24
24 FGRMAT (84X, #FRONM FRACTURES#/)
PRINT 25,VOL{(1),D(1)
25 FORMAT (26H 1-FRACTURES %1% ,2 (4XE12.6))
PRINT 26,A (1) ,X(1) :
26 FOEMAT(bﬁXE12.6,7XE12.6)
¢
po 100 M=2,d
PRINT 101, M,ABC (M-1),VOL(4),D (M)
101 FORMAT (* *IZ,1H—*MATRIX*9X1H*,A1,1H*,8XE12.6,4XE12.6)
IF (H.NE.J) PRINT 102,4 (M), X ()
102 FORMAT (66XE12.6,7XE12.6)
100 CONTINUE
c
PRINT 103
103 FORMAT (/100 (1d=))
C
RETURN
END
C
Cc
c
FUNCTION PROX (X)
C
C---—-THE PROXIMITY FUNCTION PRGX (X) KEPRZISLENTS THE FPRACTION OF
C MATRIX VOLUME [VM=(1.—VOL(1))*V0 wITJHIN A DOMAIN VO] WHICH
C IS WITHLN A DISTANCE X FROA Tl FRACIJKES.
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COMMON/PROXI/L,TYPE (10) ,PAR (7)
NOW ASSIGN DATA FOR STANFORD LARGE RESERVOIR MODEL.
DATA A,B,C,D/.263398,.190754,.2032,.191262/

GOTO(112:34L‘0“14:1'111:1) L

1 CONTINUE

--- ONE-D CASE.
PROX=2.%X/PAR (1)

IF (X-GE.PAR(1) /2.) PHOX=1.
RETURN

1 2 CONTINUE
o THWHO~D CASE. '
THE MATRIX BLOCKS HAVE THICKNESS OF PAR (1) AND PAR(2),
RESPECTIVELY, MEASURED PERPENDICULAR TC THE FRACTURES.
Tl PROXIMITY FUNCTION IS VALID FOR ARBITRARY ANGLE
BETWEEN THE FRACTURE SETS.
PROX=2.*(PAR(1)fPAR(Z))*X/(PAR(l)*PAR(Z))
X-U.*X*¥X/(PAR (1) *PAR {2))
IF (X.GE.PAR(1) /2. .OR. X<GE.PAR (2) /2.) PROX=1.
RETURN

3 CONTINUE

————— THREE DIMENSIONAL CASE.

U=2.%X/PAR (1)

V=2.%X/PAR (2)

W=2.%X/PAR (3)

PROX=U¥V*W= (U*V+UXH+VRN) +U+V+¥

IF (U-GE.1. .0R. V.GE.1. .OR. W.GE.1.) PROX=1.
RETURN

4 CONTINUE

CH¥xk%x MATRIX OF STANFORD LARGE RESEBRVOIR MODEL *%x%xx
C

c

C RECTANGULAR BLOCKS IN LAYERS B1,B2,M1,H2,T1.
VRSB %X¥X 3= (B, ¥DU. ¥A) *X#%24 (4. €A¥B+2, KBk %2) X
IF (X.GE.B/2.) VR=A*B*p

@}

TRIANGULAR BLOCKS IN LAYERS B1,B2,M1,M2,T1.

VT= (6. +4.%¥SQKT (2.) ) * X%}
X—(A*(6.+U.*SQRT(2.))/2.+2.*B*(2.+SQRT(2.)))*X**Z
X+ (A¥B* (2.+SQRT (2.) ) +B*B) *X

IF(X-GE.B/(2.+SGRT (2.))) VT=A%B*B/2.

C KECTANGULAR BLOCKS IN LAYER T2.
VRT2=8. #X*¥3- (B. kD44 #C) %X #4524 (4. ¥CKD+ 2, kD*%2) %Y
IF (X«GE.D/2.) VRT2=C%D#p ;

- C TRIANGULAR BLOCKS IN LAYEE T2.
é‘ VITZ2=(b.+4.*SQRT (2.) )% x%*3
; X-(C*(b.+4.*SQRT(2.))/2.f2-*D*(2-+SQRT(2-)))*x**z




Y-

K+ {(C*D* (2. +SQRT (2.)) #D*D) *X
IF (X.GE.D/ (2. +SQRT (2-))) VTT2=C¥D*D/2.

.
1F (L.EQ.4) GOTO 14
IF{L.EQ.5) GOTO 15
IF (L.EQ.6) GOTO 16

C

C¥%*x% NOW COMPUTE TCiAL MATRIX VOLUME WITHIN DISTANCE X.
14 V‘=5.*(5.*VR+U.*VT)+5.*VRT2+4.*VTT2

Comm—- AVEKAGE PROXIMITY FUNCTION FOR ENTIRE KOCK LOADING.
C .

VIOT=35.%A%Be*¥2+7, ¥C*D¥¥2
C VOLUME FXACTION.

PROX=V/VIOT

RETURN
C

15 PROX= (5-%VR+4.*VT) /(7. *A%XB*B)

C-=-—- PROXIMITY FUNCTION FOR FIVE BOTTOM LAYERS.

RETURN

16 PROX=(5.%VRT2+4.%¥VIT2) / (7.*C¥D*D)

(C--===-PROXIMITY FUNCTION FOR TOP LAYER.
EETURN
C
C
END
o
C
\ C
SUBROUTINE INVEK (F,X,XL,XR)
.
\ Go-=== THLS ROUTLNE LNVERTS THE PROXIMITY FUNCTION, TO GIVE A
\ C DISTANCE *X* FROM FRACIURE FACES FOR A DESIRED FKACTION *F%* OF
| C MATRIX VOLUME.
, C
\ DATA TOL/1.E-10/
¢ .
Cm——=- CHECK AND ADJUST UPPER LIMIT OF SEARCH INIERVAL.
: 22 Fk=PROX (XR)
é IF (FR.GT.F) GOTG 20
g KR=2.%XR
: 30OTO 22
' C
R PERFORM ITEKATIVE BLSECTING, TO OBTALN A SEQUENCE OF NESTED
< S NTERVALS CONTAINING THE DESIKRED POINT, X
! 20 XMID=(XE+XL)/2.
i IF (\R-%L.LE.TOL*XR) GOTO 21
§ FMID=PROX (X#4ID)-
, IF (FMID.LE.F) XL=XMNI1D
; IF (FMID.GE-F) XR=XMID
: GCT10 20
§ C
21 CONTINUE
C--—-- COME HERE FOR CONVERGENCE.
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X=XHMID
HETURN
END

SUBROUTINE MINCHME
= THIS ROUTINE WORKS SEQUENTIALLY THROUGH THE

ELEMENT ,
PRIMARY MESH, ASSIGNING ALL SECONDARY ELEJENTS AND ;ﬁTgi_THE
CONNECTIONS. BLOCK

COMMON/MINCDAT/J, NVOL, #HERE, VOL (25) ,A(25) ,D (25,
COMMON/PROXI/L,TYPE(10) ,PAR (7)
COMMON/CON/ABC (26)

DIMENSION DENT (16)

REWIND 4
READ (4,1) (DENT(I),I=1,16)
1 FORMAT (16A5)
WRITE(14,2) (DENT(I),I=1,12),J,NVQL,HHERE,TYPE(M
2 FORMAT (12A5,5H *%% ,213,A4,A5)
9 READ.(4,10) EL1,ELZ,NE,MAO,MA1,MA2,VOLX
10 FORMAT (A2,A7,12,10XA1,A2,A2,E10.4)
IF(ELY.EQ-2H .AND.EL2.EQ.1fl .AND.NE.EQ.0) GOTOY

S— FOR EACU PRIMARY ELEMENT, ASSIGN *J*% SECONDA[y ELEMENTS
D011 #=1,J -
V=VOL () *VOLX
IF (M.EQ.1) WRITE(14,14) EL1,4,NE,4A0,HA1,HMAz,y
IF (M.NE.1) WRITE(14,15) EL1,ABC(H-1) ,NE, HAT, 4ay, 4
14 FORMAT(A2,11,12,10XA1,A2,A2,E10.4)
15 FORMAT (A2,A1,12,10X1HM,A2,A2,E10.4)

IF (M. EQ.1) GOTO0100
————— COME HERE TO WRLITE INTRA-BLOCK CONNECTIONS~--..

AREA=VOLX*A (M-1)
M1=M-1
IF (M.EQ.2) WRITE(15,104) EL10, M1, NEQ0, EL1,ABC (41, D (H-1)
XD (M) ,AREA ’ ’
104 FORMAT (A2,I1,12,A2,A1,12,19X1H1,3E10.4)
IF (M. NE.2)
XWRITE(15,102) EL10,ABC(M1~1),NEO,EL1,ABC(H—1),qi'd(1_1) D (1) , AREA
102 FORMAT(2(A2,A1,12),19X1H1,3E10.4) ' r ARE

100 EL10=EL1
¢ EL20=EL2 !
NEO=NE

11 CONTINUE

GOTO9
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Idealized model of a fractured porous medium.
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Basic computational mesh for a fractured porous med

Figure 2.



b.Connected fractures

a, Fractures

XBL 8211-2610

MINC-concept for an arbitrary two-dimensional

fracture distribution.

Figure 3.
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Figure 4. MINC-partitioning for an idealized fracture .
system.
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GMIN,07,63.466601,PRUESS

*INPUT 6600B 10.55.42 10 FEB 83 VIA KP0000O
*HOLDOUT

eeeceeDIABLO,BRGMINC...e..
LIBCOPY,DIABLO,LGO,GMINCG.- i
REWIND,LGO. : &
LINK,X. :
CoPY,TAPE14/BB,O0RXR, TAPE15/RB,0RXR, NESH.
COPYSBF, MESH,OUTPUT.

EXIT-

DUMP,0.

FIN.

REWIND,INPUT. P
COPYSBF, INPUT,QUTPUT. ‘ P

ELEME
F 1 ROCK 100.

CONKNE

PART THRED
10 9o0UT 50.
.01E-2 -09E-2 -9E-2 2.E-2 4.E-2 10-E-2 20.E-2 30.E-2
20.E-2
ENDNI

Figure 7. GMINC input deck for one-block problen
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LO+FLEETLL” L0-Z8Z0ELS "
LO+3LQLLOT " 00+200000€" #* 9%k XISL1YK -8
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ELEME
F 11
F Al
FB 1
FC1
F D1
FE 1
FF 1
F G 1
F H1
FII
CONNE
F 1 1F a1
Fa 1F B 1
F B I1F C 1
FCI1F D 1
F D 1F E 1
F E IF F 1
FF IF G 1
P G 1F H 1
FHIFTI 1

Figure 9.
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ROCK .1000E-01
MOCK .9000E-01
MOCK .9000E+00
MOCK .2000E+01
MOCK .4000E+01
MOCK .1000E+02
MOCK .2000E+02
MOCK .3000E+02
MOCK .2000E+02
MOCK .1300E+02

10. -3752E-02 . 1200E+02
1 .3752E-02 -3764E-01 .1199E+02
1 .37642-01 .8447E-01 .1192E+02
1 .BU4UTE-01 .1725E+00 .1176E+02
1 -1725E+00 .4540E+00 .1143E+02
1 .4540E+00 .1032E+01 .1060E+02
1 -1032E+01 .2078E+01 .B818BE+01
1 .2078E+01 .2306E+01 .5730E+01
1 .2306E+01 .2533E+01 .3079E+«01

Secondary mesh for one-block problem

*** 10 900T THRED
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BBBB,O7,63.H66601,PRUESS

«INPUT 6600B 10.59.48 10 FEB 83 VIA KP0000O

*HOLDOUT
eweee<eDIABLO,BBBBrcc--
LIBCOPY,DIABLO,LGO,GHIHCG.
REWIND,LGO.

LINK,X.

COPY,TAPElM/BB,ORXR,TAPE15/RB,OBXB,BESH.

COPYSBF, MESH,OUTPUT-
EXIT.

DUMP,O0.

FIN.

REWIND,INPUT.
COPYSBF,INPUT,OUTPUT.

ELEME
coL 1 4 1GRAYW 1.E8

CONNE
CcOL 1COL 2 3 1 1 3 50.

PART TWO-D
6 u4ouT 20. 40.

1.E-2 4.E-2 10.E-2 25.E-2

ENDHI

50.

1.E6 1.

Figure 10. GMINC input deck for vertical columr
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ELENE EE 6

co1 1 GRAYH -1000E+07 4081
coa 1 WRAYH .40DOE+07

coB 1 MRAIW -1000E+08

coc 1 MEAYH .2500E+08

cop 1 MRAYH .3000E+08

COE 1 MRAYH .3000E+08

co1l 2 GEAYW .1000E+07

COA 2 MRAYW .4000E+07

COB 2 MRAYW .1000E+08

coc 2 MRAYW .2500E+08

coDp 2 NMRAYR .3000E+08

COE 2 MRAYW .3000E+08

co1 3 GRAYH .1000E+07
~COA 3 MBAYW <4000E+0Q7

CoB 3 WRAYS .1000E+08

coc 3 MRAYW .2500E+08

cop 3 MRAYH .3000E+08

COE 3 MRAYW .3000E+08

co1l & : GRAYWM .1000E+07

CoA 4 MRAYH .U4000E+07

COB 4 MRATW .1000E+08

coc 4 MRAYIN .2500E+08

cop 4 MRAYH .3000E+08

COE 4 MRAYW .3000E+08

col 5 GRAYW .1000E#+07

COA S MRAYW .4000E+07

cCOB 5 MBRAYW .1000E+08

coc 5 MRAYH .2500E+08

coD 5 MRAYW .3000E+08

COE 5 MRAYW .3000E+08

CONNE

co1 1cot 2 3 .5000E+02 -5000E+02 - 1000E+07 .1000E+01
Co1 2co1 3 3 T2000E¢02 .5000E+02 -1000E+07 -1000E+01
Co1 3Co1 4 3 CS000E+02 -5000E+02 -1000E+07 . 1000E+01
co1 8co1 5 3 T2000E+02 .5000E+02 -1000E+07 - 1000E+01
co1 1COA 1 10. " 1359E+00 .1485E+08
coa 1COB 1 1 . 1359E400 .3513E+00 - 1458E+08
CoB 1coC 1 1 D3513E+00 .9669E400 .13BIE+08
coc 1coD 1 1 C9669E+00 .1420E+01 .1197E+08
COD 1COE 1 1 C31420E401 .1638E+01 .9160E+07
C01 2COA 2 10. 1359E400 . 1485E+08
COA 2COB 2 1 .1359E¢00 .3513E+00 .145BE+08
COB 2COC 2 1 S3513E400 .9669E+00 -13B9E+08
coc 2coD 2 1 J9669E¢00 .1420E+01 - 1197E+08
COD 2COE 2 1 T1420E+01 -1638E+01 .9160E+07
Co1 3COA 3 10. “1359E400 - 1485E+08
COoA 3COB 3 1 -1359E+00 .3513E+00 .145B8E+08
CoB 3coC 3 1 C3513E400 .9669E+00 .1389E+08
coc 3cop 3 1 -9669E+00 .1420E+401 - 1197E+08
CoD 3COE 3 1 J1420E+01 .1638E¢01 .9160E+07
CO1 4COA 4 10.- 11359E400 . 14B5E+08
COA 4COB 4 1 .1359E+00 .3513E+00 . 145BE+08
COB 4COC 4 1 -3513E+00 .9669E+00 . 13B9E+08
COC 4COD U4 1 9669E+00 . 1420E+01 .1197E+08
COD 4COE U4 1 -1420E+01 .163BE+01 .9160E+07
CO1 5COA 5 10. T1359E+00 . 1485E+08
COA 5COB 5 1 -1359E+00 .3513E400 -1458E+08
COB 5COC 5 1 - 3513E400 .9669E+00 - 13B9E+08
CoC 5C0D 5 1 -9669E+00 .1420E+01 -1197E+08
CoD SCOE 5 3 C1420E+01 .163BE+01 .9160E+07

Figure 12. Secondary mesh for vertical columm.
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cccc,07,63.466601,PRUESS
*«INPUT 66008 11.01.27 10 FEB
*HOLDOUT

eeees DIABLO,CCCCanaea
LIBCOPY,DIABLO,LGO,GMINCG.
REWIND,LGO.

LINK, X. )
COPY,TAPE14/BB,0RXR, TAPE15/RB
COPYSBF, MESH,O0TPUT.

EXIT.

DUMP, 0.

FIN.

REWIND,INPUT.
COPYSBE,IRPUT,OUTPUT.

Figure 13. GMINC input deck for

83 VIA KP000OO

«ORXR,MESH.

ELEME

AL 1 1 -3142E+03

Ad 2 1 .2969E+04

AL 3 1 .1793E+05

AA 4 1 .9636E+05

AA S 1 .4959E+06

AA 6 1 .2507E+07

AA 7 1 .1257E+08

AA 8 1 .6285E+08

CONNE

AA tap 2 1 .5000E+00
AA 2A2 3 1 .1116E+01
AL 3AA 4 1 <2492E+01
AA  4AA 5 1 «5564E+01
AL SAA 6 1 .1242E+02
AA 6AA 7 1 2774E+02
AL 7Ar 8 1 «6192E+02

. PART ONE-D
5 20UT 10.
2.E-2 8.E-2
ENDMI

-1116E+01
«2492E+01
-5564E+01
- 1242E+02
«2774E+02
-6192E+02
«1382E+03

-6283E+03
-2031E+04
-5163E+04
-1216E+05
-2777E+05
.6262E+05
-~ T404E+00

radial flow system.
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ELEME **x 5 20UT ONE-D
AR 1 1 .6284E+01

Ak 1 .| 1 .2514E+02

AAB 1 | 1 .9426E¢02

AAC 1t L} 1 -94268+02

AAD 1 . 1 .9426E+02

aA1 2 1 .5938E+02

AAA 2 " 1 .2375E+03

AAB 2 n 1 .8907x+03

AAC 2 .| 1 .8907E¢03

AAD 2 .| 1 .8907E+03

AAl 3 1 .3586E+03

ARA 3 L] 1 .1434E+04

AAB 3 " 1 .5379E+04

AAC 3 ] 1 .5379B+04

AAD 3 L] 1 .5379E+04

AAT 4 1 .1927E+04

AAA 4 .| 1 .7709E+04

AAB 4 .| 1 .2891E+05

AAC 4 .| 1 .2891E+05
, AAD 4 .| 1 .2891E+05

AA1 5 1 .991BE+04

ARA 5 | 1 .3967E+05

AAB 5 N 1 .1488E+06

AAC 5 ] 1 .1488E+06

AAD 5 L] 1 .148BE+06

ARl 6 1 .5014E+05

AAA 6 ] 1 .2006E+06

AAB 6 ] 1 .7521E+06

RAC 6 | 1 .7521E+06

AAD 6 N 1 .7521E+06

AAY 7 1 .2514E+06

AAA 7 N 1 .1006E+07

AAB 7 ] 1 .3771E+07

AAC 7 . 1 .3771E+07

AAD 7 .| 1 .3771E+07

ARl 8 1 .1257E+07

AAA 8 ] 1 .5028E+07

AAB 8 ] 1 .1886E+08

AAC B N 1 .1886E+08

AAD B ] i -18B6E+08

CONNE

AAT 1AA1 2 1 .5000E+00 .1116E+01 .62B3E+03-.0
_AAT 2aA1 3 1 .1116E+01 .2492E+01 .2031E+04~-.0
AA1 3AAT 4 1 .2492E+01 .5564E+01 .5163E+04-.0
AA1 4AA1 5 1 .5564E+01 .1242E+02 .1216E+05-.0
AA1 SAAT1 6 1 «1242E+02 L2774E+02 .2777E+#05~.0
AA1 6AA1 7 1 L2774E+02 .6192E+02 .6262E+05-.0
AA1 7AA1 8 1 .6192E+02 .1382E+03 . 1404E+06-.0
AA1 1AAR 1 10. «2041E+00 .6158E+02
AAA 1AAB 1 1 .2041E+00 .7653E+00 .6158E+02
AAB 1AAC 1 1 .7653E+00 .7653E+00 .6158E+02
AAC TAAD 1 1 .7653BE+00 .5102E+00 .6158E+02
AAT 2AAA 2 10. ~2041E+00 .5B819E+03
AAA 2AAB 2 1 .2041E+00 .7653E+00 .SB819E+03
AAB 2AAC 2 1 .7653E+00 .7653E+00 .5819E+03
AAC 2AAD 2 1 .7653E+00 .5102E+00 .5819E+03
AA1 3aAr 3 10. -2041E+00 .3514E+0u4
AAA 3AAB 3 1 .2041B+00 .7653E+00 .3514E«04
AAB 3AAC 3 1 .7653E+00 .7653E+00 .3514E+0uy
AAC 3AAD 3 1 .7653E+00 .5102E+00 -3514E+04
AAY HAAA &4 10. .2041E+00 . 1889E+05
AAA 4AAB 4 1 .2041E+00 .7653E¢00 .1883E+05
ALAB HAAC 4 1 .7653E+00 .7653E+00 . 1889E+05
AAC MAAD 4 1 .7653E+00 .5102E+00 .1889E+05
AA1 5AAR 5 10. <2041E+00 .9720E+05
AAA 5AAB 5 1 .2041E+00 .7653E+00 .9720E+05
AAB 5AAC 5 1 .7653E+00 .7653E+00 .9720E+05
AAC S5AAD 5 1 .7653E+00 .5102E+00 .9720E+05 *
AA1 6AAA 6 10. -2041E+00 .4914E+06
AAA 6AAB 6 1 .2041E+00 .7653E+00 .4914E+0b
AAB 6AAC 6 1 .7653E+00 .7653E+00 .U4914E+06
AAC 6AAD 6 1 .7653E+00 .5102E+00 .4914E+06
AA1 TAAA 7 10. ~2041E+00 .2464E+07
AAA 7AAB 7 1 -20418+00 .7653E+00 .2U64E+07
AAB 7RAC 7 1 -7653E+00 .7653E+00 .2464E+07
AAC 7AAD 7 1 .7653E+00 .S102E+00 .2464E+07
ART BAAA 8 10. .2041E+00 . 1232E+08
AAA BAAB 8 1 .2041E+00 .7653E¢00 .1232E+08
AAB BAAC B8 1 -7653E+00 .7653E+00 . 1232E+08
AAC BAAD 8 1 .7653E+00 .5102E+00 . 1232E+08

Figure 15. Secondary mesh for radial flow systen
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Two-dimensional stochast ic fracture distribution.

Figure 17.
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Figure 18. Proximity function for stochastic fracture distribution.
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