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Abstract.

In this paper a procedure is presented to solve the estimation-identification

problem in two-phase flow modeling. Given discrete observations made on the system
response, an optimum parameter set is derived for an appropriate conceptual model by
solving the inverse problem using standard optimization techniques. Subsequently, a
detailed error analysis is performed, and nonlinearity effects are considered. We discuss
the iterative process of model identification and parameter estimation for a ventilation test
performed at the Grimsel Rock Laboratory, Switzerland. A numerical model of the
ventilation drift and the surrounding crystalline rock matrix is developed. Evaporation of
moisture at the drift surface and the propagation of the unsaturated zone into the
formation are simulated. A sensitivity analysis is performed to identify the parameters to
be estimated. Absolute permeability and two parameters of van Genuchten’s characteristic
curves are subsequently determined based on measurements of negative water potentials,
evaporation rates, and gas pressure data. The performance of the minimization algorithm
and the system behavior for the optimum parameter set are discussed. The study shows
that a field experiment conducted under two-phase flow conditions can be successfully
reproduced by taking into account a variety of physical processes and that it is possible to
reliably determine the two-phase hydraulic properties that are related to the given

conceptual model.

1. Introduction

Mathematical-numerical models commonly used to analyze
or predict the response of groundwater systems have increas-
ing capabilities for dealing with complex flow and transport
processes. Simulation tools for nonisothermal flow of mul-
tiphase, multicomponent fluids have been developed for vari-
ous applications to geothermal reservoir engineering, nuclear
waste isolation studies, and unsaturated zone hydrology. How-
ever, greater model sophistication is usually accompanied by
an increasing number of hydrogeologic parameters which enter
the governing equations to describe the interaction between
the fluids and the porous media. While some of the parameters
affecting fluid flow in partially saturated formations can be
obtained directly from laboratory experiments, such measured
parameters may differ significantly from their model counter-
parts both conceptually and numerically, mainly because of
scale effects. In order to obtain model-related formation pa-
rameters, the strategy is to calibrate the numerical model using
observations of the system response at discrete points in space
and time. The methodology of parameter estimation for satu-
rated flow was reviewed by Carrera and Neuman [1986] and
Yeh [1986]. Similar techniques have been applied to estimate
parameters for unsaturated flow and transport processes (for a
review see Kool et al. [1987]).

Three main aspects have to be considered when dealing with
inverse modeling. The first and most important is referred to as
model conceptualization. Model conceptualization can be de-
fined as the process of approximating the relevant factors that
control the behavior of the real flow system. It includes the
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specification of the flow system geometry, formulation of con-
stitutive relationships for multiphase flow, parametrization of
the model domain, and the definition of appropriate initial and
boundary conditions. While conceptualization is part of any
modeling effort, it is important to realize that the parameters
estimated by means of calibration procedures are only mean-
ingful within the framework of the given conceptual model.
Strictly speaking, they are model parameters rather than aqui-
fer parameters. The second input to inverse modeling is the
data. The type of quantities to be measured, the locations of
the observation points, and the duration of each measurement
period have to be selected so that the parameters to be esti-
mated are sensitive with respect to the data. Furthermore,
most optimization procedures require some prior estimates of
the measurement errors. The third aspect deals with the actual
procedure of how to derive model parameters from the data
observed in the field.

Modeling is an iterative process of developing model struc-
tures, for which an optimum parameter set is sought, followed
by an interpretation of the remaining residuals which may
point toward aspects of the model that need to be modified.
Residual analysis for model identification requires a good deal
of expertise and a sound understanding of the system behavior
under two-phase flow conditions. Note, however, that the step
of quantifying the parameters for a given model structure can
be carried out based on rather objective mathematical criteria.
On the other hand, model conceptualization involves more
qualitative information and may be guided by the overall pur-
pose of the modeling effort.

The most widely employed approaches to solve the inverse
problem minimize some norm of the differences between ob-
served and model-predicted state variables. If taking the view
of maximum likelihood, the performance criterion reflects the

913



914

probability density function of the final residuals. For normally
distributed residuals correlated in space and time, it can be
shown that maximizing the probability of reproducing the ob-
served data leads to a method known as generalized nonlinear
least squares estimation, for which a variety of optimization
procedures have been developed (see, for example, Scales
[1985]). If the model is nonlinear in the parameters, minimi-
zation of the objective function is an iterative process in which
information about the gradient and the convexity of the objec-
tive function is used to perform a downhill step toward a local
or global minimum. One of the most generally applicable al-
gorithms is the one proposed by Levenberg [1944], which was
improved by Marquardt [1963]. The basic idea of the Leven-
berg-Marquardt method is to move along the steepest descent
direction far from the minimum and to switch continuously to
the Gauss-Newton algorithm as the minimum is approached.

The strong nonlinearities inherent in two-phase flow make it
difficult to minimize the objective function in an efficient and
stable way. Reparametrization, such as logarithmic transfor-
mation of absolute permeabilities, and the incorporation of
prior information about the parameters have been proposed to
improve the properties of the objective function. Additionally,
the robustness of the solution has to be questioned because the
residuals almost never obey a Gaussian distribution. The as-
sumption of normally distributed residuals is convenient be-
cause it leads to very powerful optimization procedures but
may not be justified, mainly because of two reasons. First, the
errors associated with field data typically show many more
outlier points than one would expect from the tail of the nor-
mal distribution. Second, a simulation model is only able to
reproduce an average trend of the true system behavior be-
cause of the-incompleteness and inaccuracy of the underlying
conceptual model. As a result, the residuals, which contain
both model and measurement errors, may have a substantial
contribution from deviations which are systematic rather than
random; consequently, they cannot be properly described by
statistical measures. Nevertheless, least squares optimization
has proved successful in many applications. Only a few alter-
native approaches have been proposed in the field of ground-
water hydrology (for an example see Xiang et al. [1993]).

The numerical model used to simulate nonisothermal two-
phase flow is described in the next section. Subsequently, the
formulation of an objective function and its minimization are
presented. The linearity assumption of the standard error anal-
ysis will be discussed in detail. Finally, the proposed method is
applied to field data from an experiment performed at the
Grimsel Rock Laboratory, Switzerland. Two-phase flow pa-
rameters for a crystalline rock matrix are estimated based on
measurements of negative water potential, gas pressure, and
water inflow to a ventilated drift section.

2. The Direct Problem

Given a conceptual model of the physical system and a set of
values of the model parameters, the prediction of the system
response for arbitrary initial and boundary conditions is re-
ferred to as the direct problem. In this work the direct problem
is solved by using the two-phase two-component numerical
simulator TOUGH?2 [Pruess, 1987, 1991]. Consider a system
with two mobile phases B(B = g: gas; 8 = {: liquid), and two
components k (k = a: air; k = w: water). The governing mass
balance equation for each component can be written in the
following integral form [Pruess and Narasimhan, 1985):
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The integration is over an arbitrary subdomain I of the flow
system, which is bounded by the closed surface I', with inward
normal vector n. M* is the mass accumulation term for com-
ponent k, F* is the mass flux term, and g* is a term represent-
ing sinks and sources. The mass accumulation term is

M=o 2 SpppXp
B=ly

(2)

where ¢ is porosity, S is phase saturation, pg is density of
phase B, and X5 is the mass fraction of component « in phase
B. Thus M* is the total mass of component k present per unit
volume.

The mass flux terms contain a sum over the two phases

F<= > FyX5 (3)
B=Lg
where the flux of phase 8 is
kg .
Fg=—k ’TB pp(VPg — pgg) — 8pyD uppV X (4)

Here, k& denotes absolute permeability, k, g is relative perme-
ability of phase 8 as a function of saturation, p, is dynamic
viscosity of phase B, P is the pressure in phase 8, and g is
gravitational acceleration. The last term in (4) contributes only
to gas phase flow and represents the diffusive flux, with D, the
diffusion coefficient for vapor-air mixtures in porous media
[Vargaftik, 1975; Walker et al., 1981]

D=L 6
w van TO

)
where DY, is the vapor diffusivity at standard conditions T,
and P, and 6 is a material parameter to account for temper-
ature dependency. The parameter () specifies properties rel-
evant to binary diffusion in a porous medium. For air, it de-
scribes the restriction of the molecular diffusion to the gas-
filled fraction of the pore space, 1* = 1¢S s> Where Tis a
tortuosity factor. However, there is a great deal of evidence
from studies in soil sciences that diffusion of vapor is enhanced
by pore-level phase change processes [Walker et al., 1981]. The
experimentally determined values Q" for vapor diffusion may
b.e much larger than the parameter group 7¢S,, for air diffu-
sion.

Binary diffusion becomes an important factor for moisture
transfer if large temperature gradients or strong capillary
forces are present. The latter induce a decrease in the vapor
partial pressure P, according to Kelvin’s equation [Edlefsen
and Anderson, 1943]:

Pz/ = Psat exp [PL‘Mw/pt'RT] (6)

where P, is saturated vapor pressure for a given absolute
temperature T, P, = P, — P, is the capillary pressure, R is the
universal gas constant, and M, is the molecular weight of
water. As a result, a capillary pressure gradient leads to a mass
fraction gradient VX7, which is the driving force for binary
diffusion.

As part of the model conceptualization, a parametric rela-
tionship has to be chosen to describe the two-phase hydraulic
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properties. Luckner et al. [1989] derived a consistent set of
capillary pressure and relative permeability curves based on
van Genuchten’s model [van Genuchten, 1980]. The macro-
scopic capillary pressure P, can be related to saturation as
follows:

1
PC = — E (S;l/m — 1)1/n (7)

with the effective liquid saturation

_ Sl_ Slr

Se=1-%,

Sp<§, <1 (8)
where §,, is the residual liquid saturation. The parameter o can
be interpreted as the reciprocal of the air entry pressure, and
parameter n reflects the pore size distribution of the porous
medium. Withm = 1 — 1/n, and applying Mualem’s predic-
tive hydraulic conductivity model [Mualem, 1976], expressions
for liquid and gas relative permeabilities are derived [Luckner
et al., 1989], yielding

ko= Sq1— (1 -8 (9a)

krg = (1 - Se)y[]- - Sellm]Zm (9b)

where n and vy are pore connectivity parameters for the wetting
and nonwetting phases, respectively.

The thermophysical properties of liquid water and vapor are
obtained from steam table equations [International Formula-
tion Committee, 1967]. Air is treated as an ideal gas, and gas
phase pressure is assumed to be the sum of air and vapor
partial pressures. Air dissolution in liquid water is represented
by Henry’s law.

In order to describe the thermodynamic state of a three-
component (water, air, and heat) system in which local equi-
librium is assumed, it is necessary to choose three primary state
variables and a set of secondary variables which include ther-
modynamic and transport properties such as densities, relative
permeabilities, viscosities, mass fractions, enthalpies, etc. The
three variables must be chosen so that they are independent of
each other and that the entire set of secondary variables can be
derived. In multiphase flow problems involving phase transi-
tions, a different set of variables has to be used for each po-
tential phase combination. We have chosen pressure, temper-
ature, and air mass fraction as the primary thermodynamic
variables for single-phase (either gas or liquid) and pressure,
gas saturation, and temperature for two-phase conditions.
Other choices of primary variable sets are discussed in Peace-
man [1977]. The governing transport equations are discretized
in space by using an integral finite difference formulation
[Narasimhan and Witherspoon, 1976]. Time is discretized fully
implicitly as a first-order finite difference. Discretization results
in a set of nonlinear coupled algebraic equations which are
solved by means of Newton-Raphson iterations. A generalized
minimum residual conjugate gradient algorithm is used to
solve the linear equations arising at each iteration step [Seager,
1988].

3. The Inverse Problem
3.1.
The determination of hydraulic parameters based on a set of

observed state variables is referred to as the inverse problem.
Any input parameter of the numerical model can be subjected

Objective Function

to the estimation process. These are, for example, the absolute
permeability or the parameters of the characteristic curves.
Furthermore, initial and boundary conditions as well as geo-
metrical features such as fracture spacing can be considered
unknown parameters. The parameters may refer to individual
points, to elements of the discretized flow region, or to zones
for which their values are assumed to be constant. The objec-
tive of the inverse model is to provide improved estimates of
these parameters by relying on certain measurements. Poten-
tial observation types are those which correspond to or can be
derived from the model output, for example, gas pressure,
water potential, liquid flow rate, temperature, and saturation
measurements. Prior information about any of the parameters
mentioned above can be added to the vector of observable
variables. The indirect approach to inverse modeling consists
of minimizing a performance criterion that measures the dif-
ferences between observed and computed system response.
The residual vector r assembles vectors r;, which contain con-
tributions from data of a certain type j, j € {prior information,
pressure, flow rate, saturation, - -+ }

r;= YT_ Yj(P) (10)

where y7 is the vector of the observed state variables of type j
and y; contains the corresponding model output which is a
function of the unknown parameter vector p. The number of
elements in r; is equal to the number of points in space and
time for which data are available. The error structure of the
residuals is assumed to be Gaussian and can therefore be
described by a covariance matrix as follows:

C; = (a)V; (11)

The scalar o3 can be termed the prior error variance. It is
introduced to control the relative importance of observations
of different types. For prior information, o3 can be interpreted
as a weighting coefficient for the physical plausibility criterion
[Neumnan, 1973], or it can be used as a regularization param-
eter to improve the well-posedness of the nonlinear least
squares problem [Chavent, 1991]. With V; being a positive
definite matrix representing the relative error structure of ob-
servations at different points in space and time, C; reflects the
expected uncertainty of the residuals of type j. If the quality of
the data is not well known, one might consider estimating the
statistical parameters along with the other model parameters,
for example, by using the iterative procedure proposed by
Carrera and Neuman [1986]. Provided that observations of
different types are uncorrelated, the objective function to be
minimized reads

{p) = X o™V,

J

(12)

Equation (12) is the sum of the squared residuals weighted by
the inverse of the prior covariance matrix. This formulation is
identical to the general concepts used for solving coupled in-
verse problems as described by Sun and Yeh [1990]. The esti-
mator corresponding to (12) is known as the generalized non-
linear least squares estimator. Based on maximum likelihood
theory, it can be shown that minimizing ¢ is equivalent to
maximizing the probability of reproducing the observed system
state, provided that the residuals follow a Gaussian distribu-
tion. Note that because of the normality assumption inherent
in least squares formulations, the estimator leads to biased
results if Jarge residuals occur more frequently than predicted
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by the normal distribution. In these cases, the objective func-
tion should be appropriately modified to improve the robust-
ness of the estimator (for details see Finsterle [1993b}).

3.2, Minimization Algorithm

An appropriate algorithm is needed to minimize the objec-
tive function {. The least squares formulation suggests use of
Newton-type minimization algorithms with quadratic conver-
gence near the optimum. In Newton’s method, the objective
function is locally approximated by a quadratic form which
allows iterative computation of an improved parameter vector
from a previous estimate p,4 as follows:

pnGW

Prew = Poid = H'(Pold) * 2(Poia) (13)

where g is a gradient vector and H is the Hessian matrix. We
mention in passing that (13) is a closed-form solution for the
unknown parameters if the model is linear. The Hessian matrix
H is not only expensive to calculate but may also become
negative-definite if the model is strongly nonlinear. Levenberg
has proposed a method to approximate the Hessian by a matrix
H' that is easy to calculate and always positive definite [Lev-
enberg, 1944]:

H =JIC'J + uD (14)

Here, C is the assembled covariance matrix which includes all
observation types. It has a block diagonal structure with
submatrices C;. Accordingly, J is the assembled Jacobian ma-
trix of dimension m X n with elements J;, = dr,/dp,, where
m is the total number of observations, n is the number of
parameters to be estimated, and r; is the ith element of the
assembled residual vector r = (rp;, Tpes Frows -« + » Yeu)?, cON-
taining all residual vectors r; for which data are available. D
denotes a diagonal matrix of order n with elements equivalent
to the diagonal elements of matrix (J*C~'J). The scalar u = 0
is the so-called Levenberg parameter. A large value of u rep-
resents a small step in the steepest descent direction, whereas
for w — 0, (13) converges to a Gauss-Newton step. Marquardt
[1963] has given a simple rule of how to continuously update
the Levenberg parameter p during the optimization proce-
dure, switching from a gradient step far from the minimum to
a Gauss-Newton step if the minimum is approached. The rea-
son for choosing the Levenberg-Marquardt algorithm is its
robustness far from the optimum, where the topology of the
objective function may be complicated because of the nature of
the two-phase flow formulation. Furthermore, when approach-
ing the optimum, nonlinear effects are somewhat reduced,
which allows use of Gauss-Newton steps near the minimum.

3.3. Error Analysis

An uncertainty measure of the estimated parameter values is
usually obtained under the assumption of normality and lin-
earity. The normality assumption is based on the fact that the
distribution of a sum of random values always tends toward
normal if the sample size is sufficiently large. The linearity
assumption postulates that the model output can be approxi-
mated by a linear function of the parameters within the area
covered by the confidence region. Both assumptions have to be
questioned for parameter estimation in groundwater hydrology
because the sample size is usually small and the two-phase flow
model is highly nonlinear. In this section, we first derive the
covariance matrix for the linear case. We then discuss a pro-
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cedure originally proposed by Carrera [1984] to better approx-
imate the true confidence region in the nonlinear case.

The 100(1 — @)% confidence region for the true but un-
known parameter vector p contains those values p for which
[Donaldson and Schnabel, 1987)

g(P) - g(f’) = S% nFn,m—n,l*a

where p is the vector holding the optimum parameter set, s is
the estimated residual variance, and F,, ,,,_,, ;_,, is a quantile
of the F distribution. Here, « is the probability that the hy-
pothesis is rejected even though it is true. In the general case,
this confidence region is of arbitrary shape, bounded by the
points of constant likelihood. Its construction requires solving
the direct problem many times in order to produce the corre-
sponding contour of the objective function. Linearization
methods have the advantage that the resulting confidence re-
gion is ellipsoidal, making it inexpensive to construct and easy
to report. For a maximum likelihood estimator, the variance-
covariance matrix is asymptotically given by

(15)

C=sgH(p)™! (16)

where a circumflex indicates that the quantity is an a posteriori
estimate. By linearizing the model y(p) using the affine approx-
imation around p,

y(p) = y(d) + J(B) - (p — P)

we obtain for the covariance matrix of the estimated parameter
set the expression

(17)

C=s2Jv-1n! (18)

with
. r’'Vir 19
§g = m—n (19)

Since the estimated error variance s3 is a random variable, it
can be tested against the prior error variance o3. If the devi-
ation between the two values is statistically significant, then the
conceptual model provides an unlikely match to the data. Con-
sequently, the estimated parameter set has to be questioned as
well. A failure of the model test may also indicate a too opti-
mistic assumption about the prior error structure of the resid-
uals.

We can construct the confidence region for the linearized
case consisting of those values p for which

(p - lA))TC—l(P - [3) = nFn,m—n,l*a (20)

The confidence region given by (20) is a succinct represen-
tation of the region defined by (15). Recall that the covariance
matrix € approximates the actual surface of the objective func-
tion at its minimum by a tangent hyperellipsoid under the
assumption of normality and linearity. If the model is nonlin-
ear, the coverage of the confidence region by the linear ap-
proximation may be very poor with respect to both its size and
its shape. Reparametrization is a possibility to reduce nonlin-
earity effects and the asymmetry of the confidence region.

Let us now assume that the shape of the confidence region
is close to ellipsoidal and that the orientation of the hyperel-
lipsoid in the n-dimensional parameter space is accurately
obtained from the linear error analysis. Then, by only adjusting
the size of the hyperellipsoid, we can better approximate the
confidence region without losing the advantage of producing
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easily understandable results which are also simple to report.
Carrera [1984] proposed a correction for the covariance matrix
to account for nonlinearity. We adapt his basic idea of com-
paring the actual likelihood function with the results from the
linear approximation at discrete points in the parameter space.
These test points are preferably located along the main axis of
the hyperellipsoid, i.e.,

=  _ A 172 P —
Pix=DP * (nFn,m—n,l—tx) au; 1= 17 B ()

(21)

Here, p,. are two test parameter sets on the ith axis, the
direction of which is given by the eigenvector u, of the covari-
ance matrix C. Note that the distance from the optimal param-
eter set p is selected as a multiple of the corresponding eigen-
value a} and the quantile of the F distribution. This means that
the correction is tailored to approximate the confidence region
on a certain confidence level 1 — «. The eigenvalues a?, which
represent the length of the semiaxis, are now corrected as
follows:

A, +A_
a'l= afs%( —i~—> (22)
2 1
with
nan—n 1-a
A ot (23)

T (P — UP)

Finally, the new covariance matrix is back-calculated from the
eigenvectors u, and the updated eigenvalues a’'2. The pro-
posed correction requires 2»n additional solutions of the direct
problem and is thus relatively inexpensive. While the resulting
confidence region is ellipsoidal by definition, the differences
between {(p,) and {(p_) provide, as a byproduct of the cor-
rection procedure, some insight into the asymmetry of the true
confidence region.

4. Application to Field Data
4.1.

The inverse modeling formulation outlined in the previous
section has been implemented in a computer program named
ITOUGH?2 [Finsterle, 1993b], which has been verified by ap-
plying the code to synthetic test cases [Finsterle, 1993a]. The
purpose of this section is to illustrate the applicability of the
proposed methodology to field data that reveal strong two-
phase flow effects.

A series of ventilation tests have been conducted at the
Grimsel Rock Laboratory, Switzerland, a research facility op-
erated by Nagra, the Swiss National Cooperative for the Dis-
posal of Radioactive Waste. Ventilation tests were originally
conceived to determine the macropermeability of crystalline
rocks by measuring the total inflow into drift sections with
controlled ventilation. In these tests, ventilation is viewed sim-
ply as a convenient means to convey the incoming moisture to
a measuring device [Kull et al., 1991]. Accordingly, the stan-
dard interpretation of these tests is based on assuming that
flow toward the drift is single-phase liquid. However, the esti-
mated matrix permeabilities may be affected by partial drying
of the drift wall, leading to regions that are dominated by
two-phase flow effects. In order to quantify the extent of the
two-phase region and study its hydraulic properties, a joint
project between the Institute of Terrestrial Ecology, Eidgenos-
sische Technische Hochschule Zurich, and Nagra has been
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Figure 1. Schematic of model domain. TP, thermocouple
psychrometer.

initiated. In situ measurements of water potential, water con-
tent, temperature, and ambient air humidity were performed
during a ventilation test starting November 26, 1991 [Gimmi et
al., 1992].

The ventilation experiment is conceptualized as follows (see
Figure 1). We expect the flow regime to be radial in the vicinity
of the drift. The computational region extends from the drift
wall of radius 1.75 m to a presumably unaffected outer bound-
ary at a distance of 6.75 m. A constant pressure of 0.37 MPa is
prescribed at the outer boundary, reflecting the undisturbed
pressure at drift level. The impact of gravity is neglected. The
flow region is partitioned into 200 grid blocks with logarithmi-
cally increasing radial distances. The experimental site is lo-
cated in mildly deformed granodiorite that is considered ho-
mogeneous on the scale of interest. Two boreholes (BOVE
84.011 and BOVE 84.018) were drilled parallel to the drift.
They are equipped with conventional pressure transducers to
observe the hydraulic head. Thermocouple psychrometers
(TP) were installed at six different depths (2, 5, 10, 20, 40, and
80 cm from the drift wall). They measure negative water po-
tentials in the partially saturated region as a function of time.
An estimate of the total inflow to large, sealed-off sections of
the drift is obtained from measurements of the moisture ex-
tracted from the circulated air in a cooling trap. On a much
smaller scale, the evaporation rate at the drift surface is esti-
mated by measuring gradients of relative humidity and tem-
perature [Vomvoris and Frieg, 1991].

4.2, Simulation Results

In this section, we describe the formulation of the direct
problem and the simulation results using the optimum param-
eter set. The determination of the parameter values will be
discussed in section 4.3.

Prior to ventilation, the system is run to steady state in order
to obtain the initial pressure and saturation distribution and to
evaluate the inflow to the drift under almost fully liquid-
saturated conditions. Notice that by reducing the pressure in
the drift, air which is dissolved in the liquid phase comes out of
solution, leading to a very small initial gas saturation through-
out the model domain. When ventilation begins, formation
water evaporates at the surface because of the reduced relative
humidity, which is the main driving force for the desaturation
of the formation. Connell and Bell [1993] show that the transfer
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Figure 2. Flow rates and suction pressure at the drift wall as
a function of time.

of moisture at a free surface is a complicated mechanism which
depends on factors such as relative humidity, temperature gra-
dient, wind velocity in the drift, and surface roughness, the
latter two defining the thickness of the laminar boundary layer
and the magnitude of the effective vapor diffusion coefficient at
the drift wall. Rather than explicitly model the moisture trans-
fer across the drift surface, the reduced relative humidity is
imposed as a boundary condition at the drift wall, giving rise to
an equivalent capillary suction according to Kelvin’s equation
[Edlefsen and Anderson, 1943]:
R ‘
Pc,equ =In (h)Pl jvw (24)

The relative humidity % in the drift is 68% at a temperature

of 12.5°C during the first 10 days of the experiment, 71% at

" T = 13.0°C for the next 50 days, and 75% during the remain-
ing 20 days, invoking an equivalent capillary suction of —50.0,
—46.0, and —38.0 MPa, respectively. By prescribing these val-
ues directly at the drift wall, we neglect the variation in the
vapor content in the boundary layer as a function of wind
velocity and the actual evaporation rate. A sensitivity study was
performed to assess the robustness of this model conceptual-
ization. It turned out that the system behavior is relatively
insensitive to the boundary suction pressure and the strength
of the vapor diffusion at the drift wall. This is mainly because
the evaporation rate is limited by the water supply from the
formation, which is governed by the two-phase characteristics
of the rock. Increased evaporation at the surface leads imme-
diately to higher gas saturations at the drift wall, which reduces
the liquid relative permeability, thus limiting the water supply
for evaporation. The finding that the water inflow to the drift
is relatively stable is also confirmed by the results of discrete
evaporation measurements near the drift wall [Vomvoris and
Frieg, 1991]. These data show that the temporal variations in
evaporation rates due to changing climate conditions in the
drift are very minor compared with the dramatic change in the
equivalent suction pressure.

Figure 2 shows the calculated flow rate into the drift as a
function of time. It can be seen that the flow rate does not
seem to be affected by the changes in the relative humidity and
associated capillary pressure at the drift wall. The average flow
rate of water over 80 days in both liquid and vapor phases is

0.31 mg m~2 s~ ', which is larger than the steady state inflow
under single-phase liquid conditions. Obviously, there is an
increase in the amount of moisture that is removed from the
formation by evaporation. However, since the flow regime is
radial and finite, the system tends toward equilibrium between
the evaporation rate at the drift surface and the incoming
liquid from the formation, so that the expansion of the unsat-
urated zone slows down over time. The net loss of liquid in the
model region is compensated for by a counterflow of gas from
the drift into the formation.

Figure 3 depicts the pressure profile prior to ventilation and
the final distribution after 80 days. The gas pressure through-
out the partially saturated zone is close to atmospheric. The
presence of the low pressure region shown in Figure 3 is con-
sistent with the data obtained in the two boreholes BOVE
84.011 and BOVE 84.018, observations which led to specula-
tions about the impact of the unsaturated zone on head and
inflow measurements [Vomvoris and Frieg, 1991]. Here, “low
pressures” are defined as pressures which are lower than those
one might expect from a radial, single-phase flow field, i.e., the
pressure profile prior to ventilation as shown in Figure 3, or the
pressures observed in a nearby, almost saturated fracture zone
[Vomvoris and Frieg, 1991]. At the end of the experiment, the
computed gas pressure compares well with the values mea-
sured in the boreholes. Note that the formation is partially
desaturated by evaporation to a radial distance of about 4 m.
However, gas saturations greater than 50% are found only to a
depth of a few centimeters from the drift surface. One should
realize that the shape of the saturation profile depends strongly
on the parametric model that describes the capillary pressure
as a function of liquid saturation.

4.3.

Input parameters for the conceptual model described above
are determined by inverse modeling. Three decisions have to
be made. First, the calibration points in space and time must be
selected. We choose 25 logarithmically spaced points in time
during a ventilation period of 80 days and compare the calcu-
lated water potentials with the tensiometer measurements at
six different depths. Second, we assume that the standard de-
viations of the residuals are 10% of the measured values and
that they are uncorrelated. Third, we have to decide which
parameters shall be subjected to the optimization process. The

Inverse Modeling Results
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Figure 3. Gas saturation and pressure profiles. The mea-
sured borehole pressures are shown as triangles.
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Table 1. Sensitivity Analysis for Identification of Model Parameters That Will Bg

Subjected to the Optimization Process

Sensitivity Scaling
Parameter Value Coefficient Factor Sensitivity
Log (absolute permeability), m? —18.0 479 1.0 479
Van Genuchten parameter 1/c, MPa 1.0 1331 0.3 399
Van Genuchten parameter n 2.0 347 0.5 174
Vapor diffusion factor (3" 0.1 280 0.1 28
Porosity ¢ 0.01 2525 0.01 25
Van Genuchten parameter S, 0.0 247 0.1 25
Van Genuchten parameter 1 0.5 188 0.1 19
Tortuosity 7 1.0 15 0.5 8
Van Genuchten parameter y 0.333 36 0.1 4

number of parameters should be as small as possible, and the
system response at the calibration points has to be sensitive to
the unknown parameters. Furthermore, low correlation coef-
ficients are desirable so that each parameter can be deter-
mined independently. In order to obtain this information, we
define sensitivity coefficients for each parameter p; as follows:

()M (25)

where ¢, is the kth diagonal element of the assembled covari-
ance matrix C. In order to rank the parameters according to
their impact on the objective function, the sensitivity measure
(25) has to be scaled to account for the different units and
potential ranges of each of the parameters. The sensitivity
coefficients, scaling factors, and resulting sensitivities are sum-
marized in Table 1. Even though the choice of the scaling
factors is somewhat subjective, the analysis clearly indicates
that log (k), 1/a, and n are the three most sensitive param-
eters. Furthermore, the covariance matrix (18) reveals that, for
example, the two parameters n and S, are highly correlated
and cannot be determined independently from water potential
measurements alone. We therefore fix the less sensitive param-
eter S,, at the value given in Table 1 and estimate only the van
Genuchten parameter n. Consequently, the result of the opti-

mization process has to be interpreted by considering the cor-
relations between the estimated parameters and the fixed pa-
rameters, the latter being part of the conceptual model. We
finally mention that this analysis reflects the sensitivities only at
one point in the parameter space. Since the model is nonlinear,
the sensitivity coefficients S,,; change if evaluated for different
parameter combinations. Hence the analysis has to be re-
peated after completion of the optimization process. While the
sensitivity coefficients changed, the ranking was found to be
consistent with the one for the initial parameter set.

The analysis suggests estimation of three parameters,
namely, the absolute permeability k£ and the parameters n and
1/e of van Genuchten’s characteristic curves described by (7)
and (9). The initial guess for the absolute permeability of
Grimsel granodiorite is taken from Kull et al. [1993] to be
107 * m? and the empirical correlation observed by Wang
[1992] is applied to obtain the initial guesses for the van Ge-
nuchten parameter » and 1/a. We employ a reparametrization
for absolute permeability and estimate its logarithm instead of
the value itself. A starting value is assigned to each of the
unknown parameters, and the ITOUGH2 code is run, applying
least squares optimization. Figure 4 shows observed data
[Gimmi et al., 1992] and computed water potentials at different
depths from the drift surface and for a ventilation period of 80
days. The actual field data are represented by solid squares.

‘Water Potential [MPa]

5 | Measurements [Gimmi et al. 1992]
25| O Calibration points

: — — — - Best fit (water potentials only)
Best fit (extended data set)

Distance
from drift

_3'0-.. —l L L
0 10 20 30

40

80

Time [day]

Figure 4. Fit between computed and measured water potentials. Data from Gimmi et al. [1992].
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Table 2. Covariance (Diagonal and Lower Triangle) and
Correlation (Upper Triangle) Matrices

log (k) n e
log (k) 6.49 x 1073 -0.72 -0.97
n —2.34 x 1073 1.60 x 1073 0.64
e -3.91 x 1073 129 X 1073 249 x 1073

The calibration points, which are linearly interpolated between
the data, are shown as open squares. The calculated solution is
depicted as a dashed line. An alternative solution based on an
extended data set is also shown (solid lines) and will be dis-
cussed later in the paper.

First, we note that the model is capable of reproducing the
overall behavior of the two-phase flow system. Both the mag-
nitude and the trend of the water potentials are well repro-
duced by the model results. This visual finding is confirmed by
the estimated residual variance, s5 = 1.07. Since the ratio
s2/o2 = 1.07 is smaller than the quantile F 53 .. 955, = 1.24,
we conclude that the achieved match is consistent with our
expectations regarding the final residuals. The calculated total
inflow to the drift, however, is about three times higher than
the one observed in the field. The results of the inversion are
summarized in Table 2 (covariance and correlation matrices)
and Table 3 (estimated parameter set, eigenvalues, and eigen-
vectors of the covariance matrix).

The correlation matrix reveals strong interdependencies be-
tween all parameters. Since decreasing the value for # reduces
the liquid relative permeability, the absolute permeability has
to be increased in order to maintain a certain water flow rate.
This explains why » and log (k) are negatively correlated.
Similarly, the water potentials decrease with higher air entry
pressure and higher permeability, leading to a negative corre-
lation between these two parameters. The correlation between
n and Vo is difficult to predict because the effect of these
parameters on capillarity changes with saturation. Since the
propagation of the unsaturated front depends on absolute per-
meability, thus determining the saturation at each of the ten-
siometers, the correlation between the two van Genuchten
parameters is indirectly affected by their correlation with log
(k). The parameter combinations along the eigenvector with
the largest eigenvalue are relatively unreliable.

From the discussion above it can be concluded that deter-
mining the absolute permeability by means of independent
data may greatly reduce the correlations among all three pa-
rameters and therefore improve the quality of the estimation.
In order to do this, we select the total inflow rate of moisture
to the drift as an additional data point, expecting it to be a very
sensitive measure with respect to changes in the absolute per-
meability. However, inflow measurements from larger drift
sections contain significant contributions from highly conduc-
tive shear zones, which would lead to systematic errors. By
covering these shear zones with plastic sheeting, the mean flow
rate of water extracted from the granodiorite matrix is deter-
mined to be in the order of 0.3 mg s~ m™2 [Kull et al., 1991].
This is consistent with small scale measurements of evapora-
tion rates at the drift wall, where values between 0.4 and 1.3 mg
s~' m~? were observed during a short-term ventilation exper-
iment with a relative humidity of 65% [Vomvoris and Frieg,
1991]. These values are somewhat higher than the average rate
because they are taken at the beginning of a climatic change,
when increased inflow is expected (see Figure 2).
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We extend our set of calibration points by calculating the
total inflow to the drift and compare it with the measured value
given by Kull et al. [1991]. Furthermore, we include two gas
pressure measurements in our model, taken in boreholes
BOVE 84.011 and BOVE 84.018 (see Figure 1). The extent of
the reduced pressure zone as shown in Figure 3 is reflected in
these data. Pressures of 0.12 MPa and 0.28 MPa are observed
in the relevant borchole intervals, respectively [Vomvoris and
Frieg, 1991]. They are compared with the computed pressure at
the end of the modeled ventilation period. Finally, we take the
estimates of the previous run as prior information about the
parameters.

The stochastic model for the extended data set is summa-
rized in Table 4. Prior information is weighted by the inverse of
the scaling factors shown in Table 1, and (a3),,; is set to 0.4,
which slightly increases the importance of the penalty criterion.
The standard deviation of the inflow measurement is assumed
to be 0.05 mg s~ ' m ™2 A value of 0.04 is chosen for the factor
(03)s> accounting for the fact that the flow rate is a mean value
which has to be appropriately weighted against the 150 indi-
vidual water potential measurements. A standard deviation of
0.02 MPa is assigned to the residuals from the pressure mea-
surements, and (o), is reduced by a factor of 4 with respect
to the water potential measurements which serve as the refer-
ence data points with (a3),, = 1.

Next, the model is automatically calibrated by means of the
Levenberg-Marquardt minimization algorithm. The Levenberg
parameter p in (14) is initialized to be 0.01 and is reduced by
a factor of 10 after each successful iteration or increased ac-
cordingly if (13) results in an uphill step. Minimization is
started from five different initial parameter sets to ensure that
the procedure converges to a unique solution. The five initial
parameter sets, the best estimates, and the final value of the
objective function are summarized in Table 5. The reduction of
the objective function along the solution path during the first
five iterations is visualized in Figure 5a. The updated param-
eter values after each step are depicted in Figures 5b-5d for
the parameters. Optimization is stopped if the scaled step
length is smaller than a predefined value or if 10 consecutively
unsuccessful steps were taken. This occurred after between
four and seven iterations, requiring between 31 and 58 solu-
tions of the direct problem. All five inverse runs resulted in
parameter sets that are almost identical. From this finding we
conclude that the solution is unique within a parameter space
bounded by rather extreme, albeit physically reasonable, val-
ues, i.e., —21.0 < log (k) < —17.0,2.0 <n < 5.0, and 0.5
MPa < l/a < 2.5 MPa.

Inverse modeling results with the extended data set are
summarized in Tables 6 and 7. First we note that appending
flow rate and gas pressure data to the water potential mea-
surements results in a slightly lower value for the absolute
permeability. The other two parameters are shifted according

Table 3. Parameter Estimates, Eigenvalues, and
Eigenvectors of Estimation Covariance Matrix

Eigenvectors
Parameter  Estimate  Eigenvalue First ~ Second  Third
log (k), m®> —1829 9.75x107° 0.813 0.171  0.557
n 237 153 x107* —0.311 0.936  0.166
1/a, MPa 1.59  7.75x107°  —0493 0308 0814
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Table 4. Stochastic Model, Extended Data Set

Number of
Observation Type Index j Data Points (o3); Diagonal Elements of Matrix V;
Prior information pi 3 0.40 (scaling factors in Table 1)
Water potentials wp 150 1.00 (0.1 X measured value)?, MPa®
Mean inflow f 1 0.04 25X 10> mg? s m™*
Gas pressure p 2 0.25 4.0 X 10™* MPa?

to the correlation rules discussed above. This indicates that the
solution of the inversion depends not only on the value of the
observed state variable but also on the relative weighting be-
tween data of different types. Comparing Table 2 and Table 6
shows that the quality of the estimates has improved. This is
mainly due to the fact that adding flow rate data allows a more
independent determination of the absolute permeability,
which results in a reduction in the correlation coefficients.
Furthermore, weakening the indirect correlation between the
two parameters n and 1/a reveals that they are actually nega-
tively correlated. Increasing either n or 1/« affects the overall
system behavior in the same direction, i.e., decreases water
potentials (especially at the deep sensors) and enhances the
inflow to the drift.

The calculated flow rate of 0.31 mg m~2 s~ ! compares very
well with the observed value of 0.3 mg m ™2 s™*. The difference
between measured and calculated gas pressures is less than
0.01 MPa (see Figure 3). The predicted water potentials, plot-
ted as solid lines in Figure 4, are very close to the measured
values and the results from the previous calculation (dashed
lines). This can be expected because the parameter set has
been shifted basically along the eigenvector associated with the
largest eigenvalue.

The relative permeability and capillary pressure function for
the Grimsel granodiorite, as determined by inverting the data
from the ventilation experiment, are shown in Figures 6 and 7,
respectively. The impact of the parameter uncertainty on the
shape of the characteristic curves is also visualized. The stan-
dard deviations are calculated by assuming linear error prop-
agation, taking into account the correlation between n and 1/c.
The parameters S,,, n, and vy of van Genuchten’s functions are
assumed to be known exactly. The narrow error band is a result

Table 5. Best Estimates Obtained Starting From Five
Different Initial Parameter Sets

Iterations/ Final
Initial Direct Objective Best

Set Parameter Guess Runs Function  Estimate
1 log (k), m*> —17.00 6/39 159.3 —18.58
n 3.00 2.48

1/a, MPa 0.50 1.74

2 log (k), m*> —18.00 7/58 159.2 —18.56
n 2.00 247

1/a, MPa 1.00 1.74

3 log (k), m*> —19.00 5/35 160.2 —18.58
n 2.50 247

1/a, MPa 2.00 1.75

4 log (k), m*  —20.00 6/45 159.0 —18.58
n 5.00 248

1/a, MPa 1.50 1.74

5 log (k), m* —21.00 4/31 159.2 —18.56
n 4.00 2.48

1/a, MPa 2.50 1.73

of both the good match that was achieved, resulting in a low
estimated error variance s3, and the high sensitivity of the
observed system response with respect to the parameters » and
1/e.

In the remainder of this paper we demonstrate that the
actual confidence region around the optimum parameter set
can be accurately represented by a covariance matrix that is
corrected to account for nonlinearities. For illustrative pur-
poses we consider only two parameters, n and 1/a. The two-
dimensional ellipse shown below thus represents the condi-
tional confidence region of the three-dimensional ellipsoid
(Table 6), assuming that the absolute permeability is known
exactly. By evaluating the objective function for many param-
eter combinations, a contour map can be drawn (Figure 8),
depicting the location and convexity of the minimum.

10000 |

=~~~ SetNo.1
SetNo.2 |
SetNo.3 [
=~ SetNo.4
SetNo.5 |

1000 |

Objective Function

log (Permeability)

van Genuchten n [-]

van Genuchten 1/0. [MPa)

Levenberg-Marquardt Iteration

Figure 5. Performance of Levenberg-Marquardt algorithm
during minimization. {(a) Reduction of objective function; (b)
update of parameter log (k); (c) update of parameter n; (d)
update of parameter 1/c.
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Table 6. Covariance (Diagonal and Lower Triangle) and
Correlation (Upper Triangle) Matrices, Extended Data Set

log (k) n 1e
log (k) 3.84 x 107* -0.27 —0.58
n -1.59 x 107* 9.14 x 10~* -0.32
1/ -2.01 x107* 1.71 x 1074 3.12x107*

From (15) we see that the actual confidence region on a
given significance level o is bounded by the contour of the
objective function on level {(p) + sgnF, . _, ,_.. For two
parameters and 155 data points, the quantile of the F distri-
bution on the 95% confidence level is F, ;53 495 = 3.054.
The linear approximation of this confidence region is given by
(20). We then increase the corresponding eigenvalues, follow-
ing the procedure outlined in section 3.3. As a result, the actual
confidence region is accurately represented by an ellipse, the
orientation of which is calculated from the standard linear
error analysis, and its size is appropriately corrected to account
for nonlinearities. The increase in the eigenvalues which is
necessary to better approximate the actual confidence region
shows that linear error analysis provides too optimistic a mea-
sure of the estimation error. This is because (20) intrinsically
describes a minimum variance bound. Furthermore, it is shown
that the shape of the actual confidence region is close to ellip-
soidal, so that its description by means of a covariance matrix
seems justified in this case. Finally, the approximation of the
Hessian by the matrix J*V~J is accurate enough to derive the
orientation of the confidence region, i.e., the eigenvectors of
the covariance matrix (18). This concludes the discussion of the
nonlinear error analysis.

5. Concluding Remarks

Three major aspects of inverse modeling in groundwater
hydrology have been addressed in this paper.

1. The problem of parameter estimation is solved for the
simulation of groundwater systems that contain two immiscible
fluids. While the direct measurement of two-phase parameters
is both conceptually difficult and experimentally expensive, in-
verse modeling provides an appealing technique to obtain
model-related parameters by calibrating the numerical model
against sensitive observations of the system state.

2. The inverse problem is formulated in the framework of
maximum likelihood estimation theory. The objective function
from generalized least squares optimization is minimized by
using the Levenberg-Marquardt algorithm. The efficiency of
the procedure allows examination of different model structures
and different data sets, improving the understanding of the
two-phase flow system. Furthermore, the analysis of sensitivity

Table 7. Parameter Estimates, Eigenvalues, and
Eigenvectors of Estimation Covariance Matrix, Extended
Data Set

Eigenvectors
Parameter  Estimate Eigenvalue  First  Second  Third
log (k), m? -1856 552x107* 0758 —-0193  0.624
n 247  979x107* 0.024 0963  0.268
1/a, MPa 174 786 x107° —0.652 —0.188 0.734
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Figure 6. Gas and liquid relative permeabilities (rel. perm.)
for Grimsel granodiorite. The parameters of van Genuchten’s

function are determined by inverse modeling; dashed lines
indicate the 95% error band.

coefficients and the correlation structure provides some guid-
ance for the design of future experiments.

3. One of the main advantages of inverse modeling is that
the quality of the estimation can be described by statistical
measures. However, if the model is highly nonlinear, the stan-
dard linear error analysis overestimates the accuracy of the
optimum parameter set. Based on an idea originally presented
by Carrera [1984], we calculate a corrected covariance matrix
which approximates the true confidence region in the nonlin-
ear case. The procedure is computationally inexpensive and
leads to easily reportable confidence regions.

The method of parameter estimation by inverse modeling
has been applied to data from a ventilation test performed at

1000 Foom R SR P Lo

Capillary Pressure [MPa]

0.1 L | |
0.00 0.25 0.50

Liquid Saturation [-]

Figure 7. Capillary pressure function for Grimsel granodio-
rite. The parameters of van Genuchten’s function are deter-
mined by inverse modeling; dashed lines indicate the 95%
error band.
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Figure 8. Contours of objective function, true confidence re-
gion, and corrected approximation of confidence region to
account for nonlinearities.

the Grimsel Rock Laboratory. The following major conclu-
sions can be drawn from this field application.

1. We successfully modeled a field experiment conducted
under two-phase flow conditions. The conceptual model incor-
porates a variety of physical processes, including evaporation
at the drift surface, capillary forces and phase interferences,
and binary diffusion of water vapor and air, driven by vapor
pressure-lowering effects. A sensitivity analysis has been per-
formed to assess the main features of the conceptual model.
Since the system response is sensitive to the input parameters
of the numerical model, observations of different types can be
used to determine the properties of interest.

2. Inverse modeling of the ventilation experiment provides
reliable estimates of model-related formation parameters af-
fecting two-phase flow. If the absolute permeability can be
determined independently, the parameters of van Genuchten’s
characteristic curves are estimated with less uncertainty be-
cause of a more favorable correlation structure.

3. If the model is strongly nonlinear in the parameters, the
standard way of calculating error bounds on the parameters
leads to too optimistic variances. The nonlinear error analysis
proposed in this paper provides an improved estimate of the
confidence region.
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